(Pages:3)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013 (CUCSS)

Computer Science

CSC 1C 01—DISCRETE MATHEMATICS

(2010 Admissions)

Maximum: 36 Weightage

Time : Three Hours

I. Answer all questions.

 $1 (A \cup \overline{B}) =$

2 State Pigeon-hole principle.

3 Let $U = \{a, b, c, e, f, g\}, A = \{c, e\} B = \{a, fg\}$. Find the bit string corresponding to $A \cup B$.

4 Give examples of symmetric and asymmetric relation.

5 Find the inverse of $f:\mathbb{R} \times 3$ $f(\mathbf{x})=2\mathbf{x}^3-1$.

6 What is (i) linear homogenous relation, (ii) Characteristic equation ?

7 Define semigroup and give an example.

 $_{8}$ * is an operation on a two element set given by :

хУ

```
х у 🗙
```

```
у х у
```

Show that * is associative. What is identity element?

9 Let A :{2, 4, 8,16, 32} R: {(a, b)/ a b}. Draw the Hasse diagram.

10 Define Modus ponens and Modus Tollens.

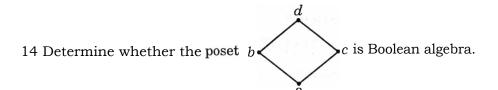
1 Let S $\{a, b, c\}$ and A be the power set of S. Draw Hasse diagram of A with partial order \subset .

a Describe the set of strings denoted by the regular expression $(0V1)^{*01}$.

(12 x 1 = 12 weightage)

Turn over

- II. Answer any six questions.
 - 13 Prove that (X -Z = (X Z) Y).



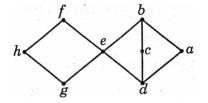
15 Find the explicit form of the recurrence relation $g_n = 4g_{n-1} - 2g_{n-2}$ given $g_1 = 2$, $g_2 = 5$.

16 Classify types of recurrence relations with examples.

- 17 Prove that $x * y = e^{x + Y}$ is not a semi group.
- 18 State the theorem on number of errors detected by an encoding fraction. Define $e: B^3 \to B'$. Verify if it is a group code.

19 Define Lattice. Give examples of Hasse diagrams that is (a) lattice (b) not a lattice.

20 Is the Hasse diagram given, a Boolean algebra ? Why ?



21 Consider the Boolean polynomial P (x1, x2, x3) = (x1 A x2) v (x, v x2 A x3)). Find the truth table.

 $(6 \ge 2 = 12 \text{ weightage})$

III. Answer any three questions.

22 State extended Pigeon-hole principle. Hence prove the following :

- (a) At least 8 bicycles will be of same colour if 7 colours used to paint 50 bicycles.
- (b) At least 90 ways to choose six numbers from 1 to 15 so that all choices have same sum.

23 (a) Prove by induction 2 + 4 + 6 + + 2n = n (n + 1).

- (b) Find the explicit formula for the sequence 0, 3, 8, 15, 24, 35, ... Identify the type of recurrence.
- 24 Let S= $\{x \mid x \text{ is an integer}\}$. Define relation * 3 a * b if a/b. Derive all properties of *.

25 (a) $S = \{1, 2, 3, 6, 9, 18\}$. Def ne * so that a * b = LCM (a, b). Characterize the set S as

semigroup or monoid or group.

(b) Consider the finite state machine with transition table given below \vdots

1 0 $\mathbf{S}_{\mathbf{1}}$ S_{o} S_o $S_i \quad S_i \quad S_2$ S_2 S_3 S_2 $S_{o.}$ S_3 S_3

 $_{\ensuremath{S_o}}$ be the start state. Find the state with the string 00101.

26 Let d be (6, 2) decoding function. Determine d(y) for the following y : (a) y = 111011 ; (b) y = 010100.

27 Discuss using examples the following :--

Distributive, complemented, dual lattices.

 $(3 \times 4 = 12 \text{ weightage})$