D 33	3367	(Pages : 2)	Name
			Reg. No
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013			
		(CUCSS)	
Computer Science			
CSC 1C 02—ADVANCED DATA STRUCTURES			
		(2010 Admissions)	
Time: Three Hours		,	Maximum: 36 weightage
		Part A	
Answer all.			
Each question carries a weightage of 1.			
1.	Define a doubly linked list. Explain	its use.	
2.	2. Give all possible representations of a binary tree having 4 nodes.		
3.	3. What is a height balanced tree ? Give an example.		
4.	4. What is the upper bound of a B tree?		
5.	5. Write a recurrence relation for computing Fibonacci series.		
6.	. Give an example of a binary tree defined in an array.		
7.	. Compare B-tree with B+ and B* trees.		
8.	What is an AA tree?		
9.	Give an example of a treap.		
10.	What is double hashing? Give an e	example.	
11.	What is splaying in a splay tree?		
12.	What is a binomial queue?		
			$(12 \times 1 = 12 \text{ weightage})$
		Part B	
Answer any six. Each question carries a weightage of 2.			
13.	Write a routine to swap two adjace.	nt elements of a linke	d list by interchanging elements.
14.	Given a circular linked list, write an algorithm to reverse the direction of the links.		
15.	Explain linked list representation of	of a priority queue.	
16.	Construct a binary tree from the fo	ollowing traversals:	
	Inorder : D B H	EAIFJ	CG

Preorder: ABDEHCFIJG

Turn over

- 17. Build a max heap from the following set starting from an empty heap:
 - 19, 55, 44, 98, 67, 48, 95, 66, 70, 69, 30, 24, 99, 82
- 18. Show how a double ended queue can be implemented using two stacks.
- 19. Give a comparison of collision resolution techniques.
- 20. Prove that maximum number of nodes possible in a binary tree of height h is (2h-1).
- 21. How is a recursive algorithm complexity computed? Explain with the help of an example.

 $(6 \times 2 = 12 \text{ weigh})$

Part C

Answer any three.

Each question carries a weightage of 4.

- ²². Write an algorithm to display elements of a binary tree in level order.
- 23. Outline Tower of Hanoi problem. Give a recursive solution to the problem.
- ²⁴. Construct a heap of first 10 natural numbers starting from 1. Illustrate heap sorting.
- 25. Why height balancing is required in a search tree? Explain any height balanced search tn..
- 26. What is a 2-3 tree? Explain the properties and operations defined on it.
- 27. With the help of an example, explain how searching is done in a digital search tree.

 $(3 \times 4 = 12 \text{ weight})$