(Pages : 3)

Name

Reg. No.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Computer Science

CSC IC 01—DISCRETE MATHEMATICS

Maximum : 36 Weightage

I. Answer all questions :

Time : Three Hours

1. Given $A = \{x \mid x \text{ is a positive integer } < 12\}$, $B = \{x \mid x \text{ is an integer and } 1 \le 6\}$,

 $C = \{x \mid x \text{ is an integer and } x^2 < 25\}$. Find number of elements in $A \cup B \cup C$, $A \cap B \cap C$.

- 2. Give examples of countable and uncountable infinite sets.
- 3. If $A \cup B = A \cup C$ must B = C? Explain.
- 4. Let A = {a, b, c, d} and R be the relation {(a, b), (b, a), (b, c), (c, d), (d, b)}. Draw the digraph of R.
- 5. Differentiate function and a relation.
- 6. Give examples of linear homogeneous and non-linear homogeneous recurrence relations. Find their degree.
- 7. (2, +), (E, +) be groups where Z, E are set of integers and set of even integers. $f: Z \to be$ defined as f(x) = 4x. Is f a homomorphism?
- 8. Define Hamming distance. Illustrate.
- 9. Define Modus ponens and modus tollens.
- 10. Show that the premise p leads to the conclusion p v q.
- 11. Let the partial order of divisibility be defined on A = {2, 4, 8,16, 32}. Draw Hasse diagram of this relation.
- 12. Define the set of strings denoted by the regular expression 0(OVI)*1.

 $(12 \times 1 = 12 \text{ weightage})$

- II. Answer any *six* questions :
 - 13. If X, Y are subsets of A then prove that $(A X) n \mathbf{Y} = \mathbf{Y} \mathbf{X}$.
 - **14.** Show that if any successive positive integers are chosen, then two of them will leave same remainder upon division by 7.

Turn over

- 15. Find the explicit formula for Fibonacci term.
- 16. Classify types of recurrence relations with examples.
- 17. Differentiate group, monoid, semi group using examples.
- 18. Define an encoding function e $B^3 \mathbb{B}^8$. Comment on the number of errors detected.
- 19. Show that Hasse diagram D_{μ} under the relation of divisibility and D_{μ} = set of divisions of n, is a lattice.
- 20. Give example of 8 element Hasse diagram that is Boolean algebra.
- 21. Compute the truth table of Boolean expression $p(x, y, z)(x \upsilon y) n(z n x')$.

 $(6 \ge 2 = 12 \text{ weightage})$

- III. Answer any three questions :
 - 22. An urn contains 15 balls, 8 are red and 7 are black. In how many ways can 5 balls be chosen so that :
 - (a) all are red.
 - (b) all are black.
 - (c) 2 red and 3 black.
 - (d) atleast 2 are red.
 - 23. (a) Prove that sum of 5 consecutive integers is divisible by 5.
 - (b) Find the recurrence relation of the sequence 3, 7, 11, 15, ... and find the explicit formula.
 - (c) Using characteristic functions show that $(A \oplus B) \subset = A \oplus (B \cup C)$.
 - 24. Define various types binary relations with examples.
 - 25. (a) Define normal group, cyclic group and provide examples.
 - (b) Consider the 4 state machine as follows (with S_o as start state).

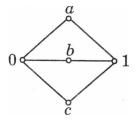
	0	1
So	50	81
S_i	S_i	S_2
S_2	S_2	\mathbf{S}_3
S_3	S_3	So

Find the state with input 11011.

26. Find group code e $B^2 \rightarrow B^5$ with parity check matrix.

 $\begin{array}{ccccccc} 0 & 1 & 1 \\ 0 & 1 & 1 \\ H = & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}$

27. (a) Given the lattice below, comment on distributive and complement properties.



(b) Find the boolean expression of the table below.

E (x, y, z)	1	0	1	0	1	0	0	1
x	0	0	0	1	1	1	0 1 1	1
У	0	0	1	0	0	1	1	1
	0	1	0	0	1	0	1	1

 $(3 \times 4 = 12 \text{ weightage})$