SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2006 Computer Science (Elective) CS 205 D-NUMERICAL AND STATISTICAL METHODS
 (2005 admissions)

Time : Three Hours
Answer any five of the following. Each question carries $\mathbf{8}$ marks.

1. Explain with example :
(ii) Normalization.
(i) Errors.
(iv) Accuracy and Precision.

Positi
Discuss Direct and Indirect methods. Hence develop a computational model for the False
methods.
3. What is pivotization ? How does it help in

Explain with an example. formula for finding the solution to a given differential equation.
4. Derive Adams-Bashforth-Moulton
5. (a) Define an experiment. Fin its sample space. Identify two mutually exclusive events and two independent events. Verify any one law of probability.
(b) State Bayes theorem. Three factories A, B, C produce $1,000,4,000$, selected at random and $\mathrm{S}_{4} \mathrm{tat}, 50$ are defective. All the parts are put in one stock pile. One is found to be defective. What is the probability that it is from A
6. (a) Given that the switch of a consultant's office receives on the probabilities that
(i) in a given min., there will be at least one call.
(ii) in a 4 min. interval, there will be at least 3 calls.
(b) A random variable X has a probability function $f(\mathrm{x})=\mathrm{k} * \mathrm{x} * \mathrm{x}$ in $(0,3)$ and 0 elsewhere:
(i) Find k.
(ii) Find $\mathrm{P}(\mathbf{1}<\mathbf{X}<2)$.
(iii)
7. Draw sketches to show infeasible, multi-optimal solutions in an

LPP.
[5 x $8=40$ marks]

Part B

Answer any four of the following.
Each question carries 10 marks.
C. Use appropriate formula to find the value of Y at

$$
\begin{aligned}
& \mathrm{X} \quad 2.53 .0 \quad 3.54 .0 \quad 4.5 \quad 5.0 \\
& \mathrm{Y} \quad: 4.324 .835 .275 .476 .206 .79
\end{aligned}
$$

9. Derive Simpson's $\mathbf{1} / 3$ rd

rule formula and hence solve the integral

$$
\int_{-2}^{+2} t d t \quad \text { with } h=0.5
$$

10. Solve the following equations by Gauss Jacobi method correct to 3 decimal places :-

$$
\begin{array}{r}
2 x-y+2 z=6 \\
2 x-y+z=3 \\
x+3 y-z=4
\end{array}
$$

11. Frame the duel of $\operatorname{Max} . Z=-5 x+2 y$ such that

Find the solution of either one of the problem and infer $-\mathbf{2}$ and $2 x+3 y g 5$ given that x, y
12. In the following transportation problem, find the the solution of the other.
and later find the optimal solution. initial basic feasible solution using any meth,

Plant	Destination				
	1	2	3	4	
1	19	30	50	10	7
2	70	30	40	60	9
3	40	8	70	20	18
Requirements	5	8	7	14	

13. (a) \mathbf{A} lot of IC chips contain 1%
reliable. P (Tester says Good defective. Each is tested before delivery. Tester is not tots' If a tested device is defective, find the probability that it is is sor ?
(b)

A machine produces bolts which are 10% defective.
sample of 400 bolts produced by this machine :
(i) Atmost 30.
(ii) Between 30 to 50
will be defective. Use
Poisson and Normal distribution for computation.

