\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2008

Computer Science (Elective)

CS 205 D-NUMERICAL AND STATISTICAL METHODS
(2005 Admission onwards)

Time : Three Hours

Maximum : $\mathbf{8 0}$ Marks

Part A

Answer any five of the following. Each question carries 8 marks.

1. Explain the different errors which one comes across while doing computations using numerical methods with an example for each.
2. Discuss Direct and Indirect methods. Hence develop a computational model for the Secant method.
3. Discuss the pivotization process with an example.
4. Derive Milne's Predictor - corrector formula for finding the solution to a given differential equation.
5. (a) Show that $P(A \cap B) P(A)<P(A \vee B)$ for any two events A and B. (3 marks)
(b) State Bayes theorem. Three factories A, B, C produce 100, 400, 500 parts of which $2,4,5$ are defective. All the parts are put in one stock pile. One is selected at random and found to be defective. What is the probability that it is from C ?
(5 marks)
6. (a) Given that the switch of a consultant's office receives on the average 0.5 calls $/ \mathrm{min}$. Find the probabilities that :
(i) in a given min., there will be atleast one call.
(ii) in a 5 min . interval, there will be almost 3 calls.
(b) A random variable X has a probability function :

$$
f(x)=k(x-1)^{4} \text { if } \mathbf{1}<\mathbf{x}<\mathbf{3}, ~ \begin{array}{cc}
0 & \text { if }<1 \\
1 & \text { if } x>3 .
\end{array}
$$

Find :
(i) k.
(ii) the p.d.f. of $f(x)$.
7. Draw sketches to show degenerate, multi-optimal solutions in an LPP.

$$
(5 \times 8=40 \text { marks })
$$

Part B

Answer any four of the following.
Each question carries 10 marks.
8. Use appropriate formula to find the value of Y at $X=2.75$ and $X=14.75$ for the data given below :

```
x _.. 2 4 6 8 10 12 14 1 16
Y ... 10 16 21 26 29 37 39 46
```

9. Derive Simpson's 3/8th rule formula and hence solve the integral :

$$
\frac{{ }^{2}{ }^{\mathrm{x}} d x}{\mathrm{x}} \text { with } h=\mathbf{0 . 5} .
$$

10. Solve the following equations by Gauss Jacobi method correct to 3 decimal places :

$$
\begin{array}{r}
2 x+2 y+z=6 \\
4 x+2 y+3 z=4 \\
x+y+z=0
\end{array}
$$

11. When is an LPP unbounded? What can you say about its dual? Verify your statement in the following problem :

$$
\begin{aligned}
& \text { Maximize } Z=1.5 \mathrm{x}+2 \mathrm{y} \\
& \text { such that } \quad 4 x+4 y>16 \\
& 2.5 x+4 y>10 \\
& \mathrm{x}, \mathrm{y}>\mathbf{O} \text {. }
\end{aligned}
$$

12. In the following transportation problem, find the initial basic feasible solution using any method and later find the optimal solution :

Sources	Destination			Supply
	1	2	3	
1	5	1	7	30
2	6	4	6	80
3	3	2	5	35
Demands	75	20	50	

13. (a) A lot of IC chips contain $\mathbf{1 \%}$ defective. Each is tested before delivery. Tester is not totally reliable. $P($ Tester says Good/Chip is good $)=0.95$. $P($ Tester says bad/Chip is bad $)=0.94$. If a tested device is defective, find the probability that it is so ?
(b) A machine produces bolts which are 10\% defective. Find the probability that in a random sample of 400 bolts produced by this machine :
(i) Atleast 30 ;
(ii) Between 30 to 50 ;
will be defective. Use Poisson and Normal distribution for computation.
