$\qquad$
$\qquad$

## SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2009

Computer Science
CS 205 D—NUMERICAL AND STATISTICAL METHODS
(2005 Admissions)
Time : Three Hours
Maximum : 80 Marks

## Part A

Answer any five of the following. Each question carries equal marks.

1. Discuss different types of errors in computing with examples.
2. Distinguish between False Position and Secant methods and hence develop an algorithm to solve a given non-linear equation by Secant method.
3. Discuss Ill-conditioned Systems of equations. Explain how it can be reduced.
4. Explain Differential equations. Derive an equation for the Runge - Kutta IV Order method.
5. a) For any two events $B$, show that $P(A n B) \leq P(A) 5 P(A U B)$. Define conditional probability and verify the expression of conditional probability in an example.
(5)
b) The chances that Dr. A diagnosis a disease $X$ correctly is $60 \%$. Chances that a patient will die by his treatment after correct diagnosis is $40 \%$ and the chances of death by wrong diagnosis is $70 \%$. A patient of $D r$. A who had disease $X$ died. What is the probability that his disease was diagnosed correctly?
6. a) A shipment of 100 tape recorders contains 25 defectives. If 10 are randomly chosen, what is the probability that 2 are defective? Use two different formulae for computing the answer. Compare \& comment.
b) Assume the mean height of soldiers to be 68.22 inches with variance of 10.8 inches. How many soldiers in a regiment of 2000 would you expect to be atleast 6 ft tall? Assumed heights to be normally distributed.
7. Solve using graphical method. Min. $Z=2 x+y$ subject to $5 x+10 y<50, x+y>$ $1, \mathrm{y}<4$ and a 7 y are non negative.
( $5 \times 8=40$ marks)

## PART - B

## Answer any four of the following. Each question carries equal marks.

8. Derive an iterative formula for the method of Newton Raphson to find solution to non-linear equations. Also solve the given equation to an accuracy upto 3 decimal places.

$$
f(x)=x^{2}-2 x-1
$$

9. Discuss the method of Trapezoidal rule and hence find the area under the curve

$$
\int_{0}^{1} \quad 1 .----\mathrm{x}^{2} \mathrm{dx} \text { with } 6 \text { strips }
$$

10. Solve the following equations by Gauss Seidel method

$$
\begin{gathered}
9 x+2 y-4 z=20 \\
x+10 y+4 z=6 \\
2 x-4 y+10 z=-15
\end{gathered}
$$

11. Minimize $Z=3 x+2 y$ subject to $3 x+y>3,4 x+3 y>6$ and $x+y<3$ given $x, y$ $>0$. Solve the above problem using dual simplex method.
12. A manager needs to assign 4 jobs to 4 workers. Cost of assignment is given in the following table. Find the optimal assignment.

| Worker | Job |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 1 | 50 | 50 | - | 20 |
| 2 | 70 | 40 | 20 | 30 |
| 3 | 90 | 30 | 50 | - |
| 4 | 70 | 20 | 60 | 70 |

Worker 1 cannot do job 3 and Worker 3 cannot do job 4.
13. (a) Three boxes contain balls as follows

| Box | White | Black | Red |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 |
| 2 | 3 | 2 | 4 |
| 3 | 4 | 3 | 2 |

A box is selected randomly and 2 balls are drawn successively. Find the probability that both are white (i) when $1 s^{t}$ ball is replaced

$$
\begin{equation*}
\text { (ii) when } 1 \text { ball is not replaced } \tag{4}
\end{equation*}
$$

(b) Find mean and variance of exponential distribution
(6)
[ $4 \times 10=40$ marks]

