Reg.No

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JULY 2011

COMPUTER SCIENCE

CSC2C01 Advanced Computer Graphics

Time : 3 Hours

Maximum Weightage : 36

.

PART A

Answer all questions. Each question carries 1 weight.

- 1. Define parallel projection.
- 2. What do you mean by surface rendering?
- 3. What are the polygon types on **OpenGL?**
- 4. Give the matrix representation for 3D translation.
- 5. Give the matrix representation for reflection of points relative to XY plane.
- 6. What do you mean by "Quaternions"?
- 7. Define **Blobby** objects.
- 8. Compare object space method and image-space method.
- 9. List any four OpenGL routines for drawing 3-D objects.
- 10. Explain the terms view plane and view reference point.
- 11. Write matrix for general parallel projection transformation.
- 12. What do you mean by texture mapping?

[12 X 1 =12 Weights]

PART B

Answer any six questions. Each question carries 2 weights.

- 13. Discuss the **OpenGL** API.
- 14. With suitable examples/illustration explain 3D scaling.
- 15. Discuss 3D rotation.

L

c

- 16. Prove that the multiplication of 3D transformation matrices for any two successive rotations about any one of the coordinate axis is commutative.
- 17. Explain "sweep representation".
- 18. Write notes on Bezier curves.
- 19. Explain "light sources" in 3D shading.
- 20. Explain 3D viewing pipeline.
- 21. Write notes on bit and pixel operations.

[6 X 2 =12 Weights] • [Turn Over]

	PART C	acts .c m(deri
	Answer any three questions. Each question carries 4 weights.	rush ' [B 1)11 fit: 51
22.	Discuss 3D display methods.	
23.	Give OpenGL implementation of 3D composite transformation.	echnolog
24.	Give a detailed account of general 3D rotation.	~logy_
25.	Explain in detail depth buffer and A-buffer methods.	100
26.	Give an account of projections in OpenGL.	71.04
27.	Write notes on sampling and aliasing techniques.	

-

[3 X 4 = 12 Weights]