\qquad
\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

 (CUCSS)Computer Science
CSS 2C 01—DESIGN AND ANALYSIS OF ALGORITHMS

(2014-Admissions)
Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries 1 weightage.

1. Differentiate Little Oh and Big Oh.
2. Worst case performance of Quick sort is
3. Define Randomized algorithm.
4. Give four examples of Dynamic programming.
5. List the advantages of Divide and Conquer strategy.
6. Explain Travelling salesman Problem.
7. Give an example of NP hard problem.
8. Define NP Complete problem.
9. Define the term PRAM.
10. EREW stands for \qquad
11. Define super vertex and Star in connected components.
12. Define approximation algorithms.

Part B

Answer six questions.
Each question carries 2 weightage.
13. Give asymptetic upper and lower bounds for $T(n)$ in the following recurrence. Assume $T(n)$ is constant for $\mathrm{n}<=2$. Make your bounds as tight as possible: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(n / 2)+\mathrm{n}^{3}$
14. Bring out the relevance of Amortized weight balanced Tree.
15. Explain the basic principle of Backtracking.
16. Compare Dynamic and Greedy approaches.
17. Explain the term "Reducibility of an lgorithm".
18. Explain Subset Sum problem.
19. Discuss handling of Write conflict in PRAM model.
20. Give a Greedy Solution for Knapsack problem.
21. Briefly explain any one approach for parallel sorting.

Part C

Answer three full questions.
Each question carries 4 weightage.
22. Show that worst-case running time of Heap sort is $\Omega(n \log n)$.
23. Perform average case analysis of Binary search.
24. Write and explain Floyed-Warshall algorithm.
25. Explain Vertex Cover Problem. Show that Vertex Cover Problem is NP Complete.
26. Discuss PRAM models and relations between them.
27. Discuss parallel Prefix computation.
($3 \times 4=12$ weightage)

