D 72972

Name	

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Chemistry

CH 1C 01—THEORETICAL CHEMISTRY - I

(2010 admissions)

Time : Three II

Maximum : 36 Weightage

Section A

Answer **all** questions. Each question carries a weightage of 1.

- 1. Which o ;he following are well behaved functions ? Justify your answer.
 - (a) ax^2 (x varies from 0 to 00).
 - (b) $\sin^{-1} x$ (x varies from -1 to +1).
- 2. Find the commutator of *x* and $\frac{\mathbf{d}}{dx}$.

3. Which of the following are eigen functions of $\frac{d}{dx}$. Justify your answer.

- (a) $\sin x$. (b) $\sin {}^{1}x$. (c) e^{ax} . (d) e^{-}
- 4. Write recursion formula. Explain it significance.
- 5. Express $\hat{\mathbf{L}}_{z}$ in Cartesian and spherical polar co-ordinates.
- 6. Define spherical harmonics. Write one example.
- 7. What do you mean by space quantization ? Explain.
- 8. State and explain postulate of spin by Goudsmith.
- 9. State and explain independent particle model !
- 10. State and explain variation theorem.
- 11. Define 'spin orbital'. Write one example.

(14 x 1 = 14 weightage)

Turn over

- 12. Explain the term 'STO'.
- 13. Write trial wave function to understand binding in H_2 by VB method.
- 14. What is Coulomb operator ? Explain its significance.

(14 x 1 = 14 weightage)

Section B

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. Write Hamiltonian operator. Show that it is a Hermitian operator.
- 16. A particle is confined to one dimensional box of length a. Show that $\Delta x \times \Delta P x$ —

$$w\chi = \frac{2}{a}\sin\left(\frac{\pi}{a}\right)x$$

- 17. For a rigid rotator L2 and Hamiltonian have the same set of eigen functions. Justify the statement.
- 18. Find the ground state energy of a particle confined to one dimensional box by variation method. Use the trial function $\phi = x(x - a)$. a is the length of the box.
- 19. Find the ground state energy of He by first order perturbation method.
- 20. Briefly discuss Roothan's concept of basis functions.
- 21. Consider bonding in CO and draw correlation diagram. Discuss.
- 22. An electron is confined to a cubical box of size 10 nm. Calculate the wavelength of the radiation required for a transition from (111) level to (211) level. Electron mass is 9.1 x 10⁻³¹ kg.
- 23. Find the charge density on Carbon atoms in butadiene. The π molecular orbitals are :

 $= 0.3717 + 0.6017 p_2 + 0.6017 p_3 + 0.3717 p_4$ **4**₁**2** = **0.6017** + 0.3717 p_2 -0.3717 p_3 + 0.6017 p_4 **4**₁**3** = 0.6017 P_1 -0.3717 P_2 -0.3717 p_3 + 0.6017 r_4 **4**₄ = 0.3717 - 0.6017 p_2 + 0.6017 p_3 - 0.3717 p_4

24. Write a brief account of quantum mechanical treatment of SP[^] hybridization.

 $(7 \times 2 = 14 \text{ weightage})$

Section C

Answer any•**two** questions. Each question carries a weightage of 4.

- 25. Apply Schrödinger wave equation for one dimensional simple harmonic oscillator. Find eigen functions and eigen values.
- 26. Discuss briefly self consistent field method to solve many electron atoms.
- 27. Find lowest energy π bonding molecular orbital in benzene using HMO method.
- 28. Discuss briefly LAAO method of bonding on applied to hydrogen molecule ion.

 $(2 \times 4 = 8 \text{ weightage})$