FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015
(CUCSS)
Chemistry
CH 1C 01—QUANTUM CHEMISTRY AND GROUP THEORY
(2015 Admissions)
Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries a weightage of 1 .

1. Calculate the de Broglie wave length of an electron accelerated by a potential of $10,000 \mathrm{~V}$.
2. Write L_{z} in terms :
(a) Cartesian co-ordinates.
(b) Spherical polar co-ordinates.
3. Write recursion formula. Explain its significance.
4. Explain quantum mechanical tunneling.
5. Define spherical harmonics. Write one example.
6. Draw polar plots for 2 s wave function. Explain.
7. Define spin orbital. Write one example.
8. is wave function of H atom is given as $\left(1 / a^{) 3 / 2} e^{e^{-a}}\right.$ Draw the wave function. Explain the nature of the plot.
9. Write Schoenflies symbol of point group for :
(a) Cyclohexane in the chair form.
(b) Dichloromethane.
10. Write matrices for :
(a) C 3.
(b) $\mathbf{S 3}$.
11. Distinguish between degenerate and non-degenerate representation with examples.
12. Find the similarity transform of any one of the vertical planes of ammonia.
($12 \times 1=12$ weightage)

Part B

Answer eight questions. Each question carries a weightage of 2.
13. Write kinetic energy operator. Show that it is a Hermitian operator.
14. Find the commutator of L_{x} and $\hat{\mathrm{L}}_{y}$.
15. An electron is confined to a cubical box of length 10 nm . Find the wave length of the radiation required for a transition from the ground state to the first excited state.
16. Apply Schrödinger wave equation for one dimentional simple harmonic oscillator transform it into a hermite equation.
17. 2s wave function is given as $\frac{1}{4 \sqrt{2 \pi}} \int^{1)_{3 / 2}}(2-a) e^{-} \quad \circ$. Find the value of r at which maximum probability for finding the electron is observed.
18. Using great orthogonality theorem, derive reduction formula.
19. Show that the symmetry operations $E, e_{z(z)} i$ and $\sigma_{x y}$ form a mathematical group under multiplication.
20. Taking the positional co-ordination of all atoms of cis-butadiene ($\mathrm{C}_{2} v$). generate a reducible representation (write only characters of the corresponding matrices).
21. Using great orthogonality theorem derive $\mathrm{C}_{4} v$ character table.
22. Define Hermitian operator. Show that Hermitian operators always have real eigen values.
23. Briefly explain 'space quantization'.
24. Generate group multiplication table for $\mathrm{C}_{3} v$.

Part C

Answer any two questions.
Each question carries a weightage of 4.
25. What are the postulates of quantum mechanics? Discuss.
26. Apply Schrödinger wave equation for a rigid rotor. Find eigen functions and eigen values.
27. Apply Schrodinger wave equation for H atom. Transform into spherical polar co-ordinates. Separate the variables $\mathbf{r}, 0$ and 4). Solve the $\Phi(p h i)$ equation.
28. Discuss briefly :
(a) Symmetry breaking.
(b) Rodrigue's formula.
(c) Dirac's relativistic equation.
(d) Similarity transformation.

