FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

 (CUCSS)Mathematics
MAT 10 03-REAL ANALYSIS—I
(2010 Admissions)

Time: Three Hours
Maximum : 36 Weightage

Part A (Short Answer Questions (1-14)
 Answer all questions.
 Each question has 1 weightage.

1. Prove that every neighborhood is an open set.
2. In closure of a connected set connected ? Justify your answer.
3. Prove that a closed subset of a compact space is compact.
4. Let \mathbf{E} be an infinite subset of a compact set K. Prove that E has a limit point in K.
5. Prove that the composition of two continuous functions is continuous.
6. Explain discontinuities of first and second kinds.
7. Let $\mathbf{f}(\mathbf{x})=|x|^{-}$. Evaluate $f^{\prime \prime}(x)$ for all real \mathbf{x}.
8. Let a be increasing on $[a, b]$ and continuous at $x_{0} \mathbf{E}(a, b)$. If $\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)=\mathbf{1}$ and $f(x)=\mathbf{0}$ for $\mathbf{x} \neq x_{U}$, then prove that $\int_{a}^{b} f d \alpha=0$.
9. Let f_{1}, f_{2} be bounded functions and a be monotonic increasing function on [a, b]. Prove that if f_{1}, f_{2} are Reimann-Steiltjes integrable with respect to a on $\left.[\mathrm{a}, 1)\right]$ and $f_{1} \quad \mathrm{f}_{2}(x)$ on $[\mathrm{a}, \mathrm{b}]$, then prove that $\int_{a}^{b} f_{1} d x \int_{a}^{b} 1_{2} d x$.
10. Let f be Reimann integrable on $[\mathbf{a}, \mathbf{b}]$ and for $a \propto \quad$ let $\mathbf{F}(\mathbf{x}) \quad f(t) d t$. Prove that \mathbf{F} is continuous on $[a, b]$.
11. Let $y[0,1] \rightarrow \mathbb{R}^{-}$be given by $\mathrm{y}(\mathrm{x})=\left(2 \mathrm{x}, \mathbf{x}^{2}+1\right)$. Prove that y is rectifiable.
12. If $\left\{\mathbf{f}_{n}\right\}$ and $\left\{g_{n}\right\}$ converge uniformly \mathbf{E}, then prove that $\left\{f_{n}+g_{n}\right\}$ coverge uniformly on \mathbf{E}.
13. Define equicontinuous family on functions and give an example of it.
14. Does a uniformly bounded sequence has a uniformly convergent subsequence ? Justify your answer.
(14 x $1=14$ weightage)

Part B

Answer any seven from the following ten questions. (15-24)
Each question has weightage 2.
15. Prove that countable union of countable sets is countable.
16. Prove that continuous image of a compact set is compact.
17. Let $\mathrm{I}=[0,1]$ be a closed unit interval and let \boldsymbol{f} be continuous mapping of I into I . Prove that $\boldsymbol{f}(\boldsymbol{x})=\mathrm{x}$ for atleast one $x_{\mathrm{E}} \mathrm{I}$.
18. Let $[\mathrm{x}]$ denote the largest integer less than or equal to x and let $(x)=x-[x]$. What type of discontinuities does the function (x) have?
19. Let \boldsymbol{f} be defined on $[\mathrm{a}, b]$. If f has a local maximum at a point $x_{\mathrm{E}}(a, b)$ and if $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ exists, then prove that $\boldsymbol{f}^{\prime}(\boldsymbol{x})=0$.
20. Show by an example that the L' Hospital rule need not true for vector valued functions.
21. For $1<s<00$, define $\zeta(s)=\sum_{\mathbf{n}=1}^{00} \frac{1}{n^{s}}$. Prove that $\zeta(\mathrm{s})=s \quad[x]$ $d x$, where $[x]$ denote the greatest integer less than or equal to x .
22. Let \boldsymbol{f} be a bounded function and a be a monotonic increasing function on $[\mathrm{a}, \boldsymbol{b}]$. Prove that if f is Reimann-Steiltjes integrable with respect to a on $[\mathrm{a}, \boldsymbol{b}]$, then $|f|$ is Reimann-Steiltjes integrable with respect to a on $[\mathrm{a}, \boldsymbol{b}]$ and $\left|\int_{a}^{b} d d \alpha\right| \int_{a}^{b}|f| d \alpha$.
23. Let K be a compact metric space and let $f_{\mathrm{n}} \mathrm{EC}(\mathrm{K})$ for $\mathrm{n}=1,2,3, \ldots$ If f_{n} converges uniformly on K, then prove that $\left\{f_{n}\right.$ is equicontinuous on K.
24. For $\mathrm{n}=1,2 \ldots$ and x real let $\mathbf{I n}(\mathbf{x})=\begin{gathered}\mathrm{x} \\ \mathbf{1}+n x^{2}\end{gathered} \cdot$ Show that $\left\{f_{n}\right\}$ converges uniformly.

Part C

Answer any two from the following four question (25-28)
Each question has weightage 4.
25. (a) Let \mathbf{E} be a non-compact set in \mathbb{R}^{1}. Prove that there exists a continuous function on \mathbf{E} which is not bounded.
(b) Prove that monotonic functions have no discontinuities of the second kind.
26. Let f be a continuous mapping of compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
27. (a) If f is differentiable on $[a, b]$, then prove that f^{\prime} cannot have any simple discontinuity on $[a, b]$.
(b) Let f be a bounded function and a be a monotonic increasing function on $[a, b]$. Prove that is Reimann-Steiltjes integrable with respect to a on $[a, b]$ if any only if for every $\mathbf{e}>0$ there exists a partition \mathbf{P} of $[\mathbf{a}, \mathbf{b}]$ such that $\mathbf{U}(\mathbf{P}, f, \mathbf{a})-\mathbf{L}(\mathbf{P}, f, \mathbf{a})<\mathbf{s}$.
28. (a) Prove that there exists a real continuous function on the real which is nowhere differentiable.
(b) State Stone-Weirstrass Theorem.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

