\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014 (CUCSS)

Mathematics
MT IC 02-LINEAR ALGEBRA

Time: Three Hours
Maximum : 36 Weightage

Part A (Short Answer Type)
 Answer all questions.
 Each question has weightage 1.

1. Prove that for $\mathbf{a},{ }_{3}$ in a vector space $V,-(a+13)=\mathbf{- a}+(-\beta)$.
2. Show that $U=\left\{(x, 2 x): x e R I\right.$ is a subspace of \mathbb{R}^{-}.
3. Verify whether the set of all 3×3 diagonal matrices span the space of all 3×3 matrices.
4. Find the dimension of the space of all upper triangular 2×2 matrices over R.
5. Find the Co-ordinate vector of $(1,-1,2) E R^{3}$ w.r.t. the ordered basis $\{(1,0,1),(1,0,0),(1,1,0)\}$.
6. Let $\mathbf{T}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{3}}$ be defined by $\mathrm{T}(x, y)=(x+y, x y, y)$. Verify whether \mathbf{T} is linear.
7. Let $\mathbf{W}=\operatorname{span}\{(1, \mathbf{0}, \mathbf{1}),(\mathbf{0}, \mathbf{0}, \mathbf{1})\}$. Let $f: \mathrm{R}^{3} \rightarrow \mathrm{R}$ be defined by:

$$
f(x, y, z)=y . \text { Verify whether } f \mathbf{E} \mathbf{W}^{\circ}
$$

8. Find the characteristic polynomial of $\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}$.
9. Find all characteristic values of $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
10. Let $W=\operatorname{Span}((1,2,1)\}$ and $T: \mathbf{R}^{3} \mathbf{R}^{3}$ be defined by $T(x, y, z)=(x+z, 2 y, 2 z)$. Verify whether W is an invariant subspace of T.
11. Let $W_{1}=\operatorname{span}\{(1,1,1),(1,1,2))$, and $W_{2}=\operatorname{span}\{(2,2,3))$. Verify whether $W_{1}+W_{2}$ is a direct sum.

12. Verify whether $(\mathbf{1}, \mathbf{1}),(\mathbf{1},-1)$ are orthogonal in R^{2}.
13. Prove that if E is an orthogonal projection of V onto W then $\mathscr{f m}(1-\mathrm{E})=\mathrm{W} \cdot$
$(14 \times 1=14$ weightage $)$

Part B (Paragraph Type)

Answer any seven questions.
Each question carries weightage 2.
15. Let V be a vector space over a field F and c 0 . Prove that if $\mathrm{ca}=0$ for some a V , then $\mathrm{a}=0$ •
16. Verify whether $S=\{(x, y, x+y+1): x, y \in \mathbb{R}\}$ is a subspace of
17. Show that the row space of $\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right|$ is R3.
18. Show by an example that for non-zero subspaces $\mathbf{W}_{1}, \mathbf{W}_{2}$ of a vector space V , $\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)$ can be equal to $\operatorname{dim} W_{1}$.
19. Find the matrix of the transformation $\mathrm{T}^{3} \rightarrow \mathrm{R}^{3}$ defined by $\mathrm{T}(x, \mathrm{y}, z)=(x+y, \mathrm{y}+z, \mathrm{y})$ w.r.t. the ordered basis ($(0,1,1),(1,1,0),(1,0,0) 1$.
20. Let $V=R^{2}$ and $B=\{(1,0),(0,1)\}$. Find the dual basis of V^{*} corresponding to B.
21. Let T be an invertible linear operator and $\mathrm{c}_{\neq 0}$ be a characteristic value: of T . Prove that -is a characteristic value of T^{-1}.
22. Express le as a direct sum $\mathrm{W}_{1} \quad \mathbf{W}_{2}$, where $\mathrm{W}_{1}=\operatorname{span}((1,1,1),(1,2,1))$.
23. Let T be a linear operator on V and let $\mathrm{V}=\mathrm{W}_{1} \oplus \mathbf{W}_{2}$, where W_{1} and \mathbf{W}_{2} are invariant under T . Prove that $\operatorname{det}(\mathrm{T})=\operatorname{det}\left(\mathrm{T}_{1}\right) \cdot \operatorname{det}\left(\mathrm{T}_{2}\right)$ where T_{i} is the restriction of T to $\mathrm{W}_{\boldsymbol{l}}$ for $i=1,2$.
24. Verify whether (x y) defined by $(\mathrm{x} \mid \mathrm{y})=\mathrm{x} 1+\hat{y_{\mathrm{J}}}$ for $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ is an inner product on R^{2}.

Part C (Essay Type)
 Answer any two questions.
 Each question carries weightage 4.

25. Define Co-ordinate vector of an element a in a finite dimensional vector space V, over a field F. Let \mathbf{B} be an ordered basis of \mathbf{V} and \mathbf{P} be an $\mathrm{n} \times \mathrm{n}$ invertible matrix over \mathbf{F} where $\mathrm{n}=\operatorname{dim} \mathbf{V}$. Prove that there exists a unique ordered basis \mathbf{B}^{\prime} of \mathbf{V} such that $[\alpha]_{B^{\prime}}=\mathbf{P}[\alpha]_{\mathcal{B}^{\prime}}$ for all a E V
26. (a) Let $\left\{a_{1}, \alpha_{2}, \ldots, \alpha_{n} I\right.$ be a basis of a vector space V and $\beta_{1}, P_{2}, \beta_{n}$ be elements of V. Prove that there exists a unique linear operator \mathbf{T} on \mathbf{V} such that $\mathrm{T}\left(\alpha_{\imath}\right)=\beta_{\imath}$ for every i.
(b) Find all linear operators on the one-dimensional space III over \mathbf{R}.
27. Define the transpose T^{t} of a linear transformation T. Prove that for linear transformations of finite dimensional spaces, $\operatorname{rank}(\mathrm{T})=\operatorname{rank}(\mathrm{Ti})$.
28. Let V be a finite dimensional space and $\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots, W_{R}$ be subspace of V and let $\mathrm{V}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{k}}$. Prove that the following are equivalent
(a) $\quad W_{1}, W_{2}, \ldots, W_{R}$ are independent.
(b) If B_{\imath} is a basis of W_{\imath} for $i=1, \ldots, k$ then $B=B_{1} \cup B 2 v \ldots B_{k}$ is a basis for V.
