D 52972

Name	•••••	•••••

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Mathematics

MT IC 02-LINEAR ALGEBRA

Time : Three Hours —

Maximum : 36 Weightage

Part A (Short Answer Type)

Answer **all** questions. Each question has weightage 1.

- 1. Prove that for a, $_{3}$ in a vector space V, $-(a + 13) = -a + (-\beta)$.
- 2. Show that $U = \{(x, 2x) : x \in RI \text{ is a subspace of } \mathbb{R}^n\}$.
- 3. Verify whether the set of all 3 x 3 diagonal matrices span the space of all 3 x 3 matrices.
- 4. Find the dimension of the space of all upper triangular 2 x 2 matrices over R.
- 5. Find the Co-ordinate vector of $(1, -1, 2) \in \mathbb{R}^3$ w.r.t. the ordered basis $\{(1, 0, 1), (1, 0, 0), (1, 1, 0)\}$.
- 6. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by T(x, y) = (x + y, xy, y). Verify whether T is linear.
- 7. Let $W = \text{span} \{(1, 0, 1), (0, 0, 1)\}$. Let $f: \mathbb{R}^3 \to \mathbb{R}$ be defined by :

f(x, y, z) = y. Verify whether $\int \mathbf{E} \mathbf{W}^{\circ} \cdot$

- 8. Find the characteristic polynomial of $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.
- 9. Find all characteristic values of $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.
- 10. Let W = Span ((1, 2, 1)) and T : \mathbb{R}^3 \mathbb{R}^3 be defined by T(x, y, z = (x + z, 2y, 2z). Verify whether W is an invariant subspace of T.
- 11. Let $W_1 = \text{span} \{(1, 1, 1), (1, 1, 2)\}$, and $W_2 = \text{span} \{(2, 2, 3)\}$. Verify whether $W_1 + W_2$ is a direct sum.
- 12. Verify whether T \mathbb{R}^2 defined by T(x, $y) = \frac{x \pm y \times z}{2}$ y is a projection.

Turn over

(Pages : 3)

- 13. Verify whether (1, 1), (1, -1) are orthogonal in \mathbb{R}^2 .
- 14. Prove that if E is an orthogonal projection of V onto W then $\mathcal{I}_m(1-E) = W$.

 $(14 \text{ x } \mathbf{1} = 14 \text{ weightage})$

Part B (Paragraph Type)

Answer any **seven** questions. Each question carries weightage 2.

15. Let V be a vector space over a field F and c 0. Prove that if ca = 0 for some a **E** V, then a = 0.

16. Verify whether $S = \{(x, y, x + y + 1) : x, y \in \mathbb{R}\}$ is a subspace of

17. Show that the row space of $\begin{bmatrix}
 1 & 2 & 3 \\
 0 & 2 & 1 \\
 0 & 0 & 3
 \end{bmatrix}$ is **R3.**

- 18. Show by an example that for non-zero subspaces \mathbf{W}_1 , \mathbf{W}_2 of a vector space V, dim ($W_1 + W_2$) can be equal to dim W_1 .
- 19. Find the matrix of the transformation T R³ \rightarrow R³ defined by T(x, y, z) = (x + y, y + z, y) w.r.t. the ordered basis ((0, 1, 1), (1, 1, 0), (1, 0, 0)1.
- 20. Let $V = R^2$ and $B = \{(1, 0), (0, 1)\}$. Find the dual basis of V^* corresponding to B.
- 21. Let T be an invertible linear operator and $c \neq 0$ be a characteristic value: of T. Prove that $\frac{-}{c}$ is a characteristic value of T⁻¹.
- 22. Express le as a direct sum W_1 W_2 , where $W_1 = \text{span}((1, 1, 1), (1, 2, 1))$.
- 23. Let T be a linear operator on V and let $V = W_1 \oplus W_2$, where W_1 and W_2 are invariant under T. Prove that $det(T) = det(T_1) \cdot det(T_2)$ where T_i is the restriction of T to W_i for i = 1, 2.
- 24. Verify whether (x y) defined by $(x | y) = x_1 + y_1$ for $x = (x_1, x_2)$, $y = (y_1, y_2)$ is an inner product on \mathbb{R}^2 .

 $(7 \times 2 = 14 \text{ weightage})$

Part C (Essay Type)

Answer any **two** questions. Each question carries weightage 4.

- 25. Define Co-ordinate vector of an element a in a finite dimensional vector space V, over a field F. Let B be an ordered basis of V and P be an n x n invertible matrix over F where $n = \dim V$. Prove that there exists a unique ordered basis B' of V such that $[\alpha]_{B} = P[\alpha]_{B'}$ for all $a \ge V$
- 26. (a) Let $\{a_1, \alpha_2, ..., \alpha_n\}$ I be a basis of a vector space V and β_1, P_2 , β_n be elements of V. Prove that there exists a unique linear operator T on V such that $T(\alpha_i) = \beta_i$ for every *i*.
 - (b) Find all linear operators on the one-dimensional space III over R .
- 27. Define the transpose T^t of a linear transformation T. Prove that for linear transformations of finite dimensional spaces, rank (T) = rank (Ti).
- 28. Let V be a finite dimensional space and $W_1, W_2, ..., W_k$ be subspace of V and let $V = W_1 + ... + W_k$. Prove that the following are equivalent
 - (a) $W_1, W_2, ..., W_R$ are independent.
 - (b) If \mathbf{B}_i is a basis of \mathbf{W}_i for i = 1, ..., k then $\mathbf{B} = \mathbf{B}_1 \cup \mathbf{B}_2 \mathbf{v} \dots \mathbf{v} \mathbf{B}_k^{\perp}$ is a basis for V.

 $(2 \times 4 = 8 \text{ weightage})$