\qquad
\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

 (CUCSS)
Mathematics

MT IC 04-ODE AND CALCULUS OF VARIATIONS

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

2. Locate and classify the singular points on the x-axis of the differential equation

$$
x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0
$$

3. The equation $y^{\prime \prime}+\mathbf{p} \quad 4^{\mathbf{y}=0}$, where p is a constant has a series solution of the form $\mathrm{y}=a_{n} x^{n}$. Show that the coefficients $\mathbf{a}_{\mathbf{n}}$ are related by the formula
$(n+1)(n+2) a_{n+} 2+\left(p+\frac{1}{2}\right)\left(a_{n}-{ }_{4} a_{n-2}=0\right.$.
4. Determine the nature of the point $x=00$ for Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$.
5. Verify that $p_{n}(-1)=(-1)^{n}$ where $p(x)$ is the nth degree Legendre polynomial.
6. Write Bessel's equation of order two and show that $x=0$ is a regular singular point of it.
7. Show that $J_{-/ 2}(x)=\left|\frac{\sqrt{2}}{\pi x} \cos \right| x$.
8. Describe the phase portrait of the system $\frac{d x}{d t}=x, \frac{d y}{d t}=0$.
9. Determine whether the function $-x^{2}-4 x y-5 y^{2}$ is positive definite, negative definite, or neither.
10. Show that every non-trivial solution of $y^{\prime \prime}+\left(\sin ^{-} x+1\right) y=0$ has an infinite number of positive zeros.
11. State Picard's theorem.
12. Show that $\mathbf{f}(x, y)=x y^{-}$does not satisfy a Lipschitz condition on any strip ax $\quad b$ and $-\mathrm{a}<\mathrm{y}<\mathrm{a}$.
13. Find the extremal for $\boldsymbol{(1) ^ { - }} d x$
14. What is the isoperimetric problem.
(14 $\times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Express $\sin \mathrm{x}$ in the form of a power series $\sum a_{n} x^{n}$ by solving $\mathrm{y}^{\prime}=\left(1-\mathrm{x}^{2}\right) \quad \mathrm{y}(0)=0$; in two ways.
16. Find the general solution $\mathrm{y}^{\prime \prime}+x y^{\prime}+y=0$.
17. Show that the solutions of the equation $\left(1-x^{2}\right) y^{\prime \prime} \quad 2 x y^{\prime}+\mathrm{n}(\mathrm{n}+1) \mathrm{y}=0$, where n is a non-negative integer, bounded near $x=\mathbf{1}$ are precisely constant multiples of $\mathrm{F}\left[-\mathrm{n}, n+1,1, \frac{1}{2}(1-x)\right]$.
18. Find the first three terms of the Legendre series of

$$
f(x)= \begin{cases}0 & \text { if }-1 \leq x<0 \\ x & \text { if OS } x\end{cases}
$$

Show that between any two positive zeros of $\mathbf{J}_{0}(x)$ there is a zero of $\mathbf{J}_{\mathbf{1}}(x)$ and that between any two positive zeros of $\mathrm{J}_{1}(x)$ there is a zero of $\mathrm{J}_{0}(x)$.
19. Find the critical points and the differential equation of the paths of the non-linear system :

$$
\begin{array}{lll}
d x \\
d t & \stackrel{2}{+} 1), & d y \\
d t
\end{array}=2 x v^{2}
$$

20. If $f(x)= \begin{cases}1 & , 0 \leq x<1 / 2 \\ 1 / 2 & , \mathbf{x}=1 / 2 \\ 0 & , 1 / 2<x \leq 1,\end{cases}$

21. Verify that $(0,0)$ is a simple critical point of the system
$\begin{aligned} & d x \\ & d y\end{aligned}=x+y-2 x y, \begin{aligned} & d y \\ & d t\end{aligned}=-2 \mathrm{x}+\mathrm{y}+3 \mathrm{y}^{2}$ and determine its nature and stability properties.
22. State and prove sturm separation theorem.
23. Find the exact solution of the initial value problem $y^{\prime}=y^{2}, \mathbf{y}(0)=1$: starting with $y_{u}(\mathbf{x})=1$, apply Picard's method to calculate $y_{1}(x), y_{2}(x), y_{3}(x)$, and compare these results with the exact solution.
24. Find the curve of fixed length L that joins the points $(0,0)$ and $(1,0)$, lies above the x-axis and encloses the maximum area between itself and the x-axis.

$$
\text { (} 7 \times 2=14 \text { weightage) }
$$

Part C
 Answer any two questions.

Each question carries 4 weightage.
25. Find two independent Frobenius series solutions of the equation $x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0$.
26. Determine the general solution of the hyper geometric equation

$$
\mathbf{x}(1-x) \mathbf{y}^{\prime \prime}+[c-(\mathrm{a}+b+1) x] y^{\prime}-a b y=0
$$

27. Find the general solution of the system $\frac{d x}{d t}=7 \mathrm{x}+6 \mathrm{y}, \frac{d_{\wedge}}{d t}=2 x+6 y$.
28. Let $f(x, y)$ be a continuous function that satisfies a Lipschitz condition

$$
\text { If }\left(x, y_{1}\right)-f(x, Y 2) 1 \quad k\left|y_{1} \quad y_{2}\right|
$$

on a strip defined by $a \leq x \leq b$ and $-\mathrm{a}<\mathrm{y}<\operatorname{co}$. If $\left(x_{u}, y_{U}\right)$ is any point of the strip, then the initial value problem $\mathrm{y}^{\prime}=f(x, y), y\left(\mathrm{x}_{0}\right)=$ yo has one and only one solution $\mathrm{y}=\mathrm{y}(\mathrm{x})$ on the interval $a<x<b$.
(2 x $4=8$ weightage)

