\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(CUCSS)

Mathematics
 MT IC 05—DISCRETE MATHEMATICS
 (2010 Admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Questions) (1-14)
Answer all questions.
Each question has 1 weightage.

1. Let (X, \quad and $(\mathbf{Y}, 2)$ be partially ordered sets and let $\mathrm{Z}=\mathrm{X} \times \mathrm{Y}$. Define a relation $<$ on Z as follows :

$$
\left.y_{1}\right)<\left(x_{2}, y_{z}\right) \Leftrightarrow \quad \mathbf{x}_{2} \text { and } y_{1<2} y_{z} .
$$

Prove that $<$ is a partial order on Z.
2. Let \mathbf{X} be the set of positive integers which divide $\mathbf{3 0}$. Define a relation $<$ on \mathbf{X} by $x \quad y$ if and only if $x \mathrm{I} y$. Draw the Hasse diagram of this relation.
3. Let $\left(\mathbf{X},+, .\right.$,) be a Boolean algebra. Prove that $\left(x^{\prime}\right)^{\prime}=x$ for all $x \in \mathbf{X}$.
4. Prove that $\mathbf{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{3}$ is symmetric with respect to x_{1} and x_{2}.
5. Find the girth of the graph \mathbf{K}_{5}.
6. Define Eulerian graph. Determine the values of m and n such that $\mathrm{K}_{t r, n}$ is Eulerian.
7. If \mathbf{G} is a simple graph, then prove that $\operatorname{dim} \mathbf{G} 3$ implies $\operatorname{dim} \mathbf{G} _3$.
8. Let \mathbf{G} be a graph with connectivity 4. Is G 2-connected ? Justify your answer.
9. Prove that $\mathrm{K}_{3,3}$ cannot be drawn without crossing.
10. Let $l\left(\mathrm{~F}_{l}\right)$ denotes the length of face F_{l} in a plane graph \mathbf{G}, then prove that $2 e(\mathrm{G})=\sum l\left(\mathrm{~F}_{1}\right)$, where $e(\mathrm{G})$ is the numbr \mathbf{r} of edges in \mathbf{G}.
11. Find a grammar for $-=\{a, b\}$ that generates the set of all strings with exactly one a.
12. Define a regular language and give an example of it.
13. Show that if L is regular, then so is $L_{-}\{X)$.
14. Find the set of strings accepted by the following deterministic acceptor.

($14 \times 1=14$ weightage)

Part B

Answer any seven from the following ten questions (15-24).
Each question has weightage 2.
15. Let ($\mathbf{X},+, .$,) be a finite Boolean algebra. Prove that every element of X can be uniquely expressed as a sum of atoms.
16. Prove that in a distributive, bounded lattice, the complements are unique, whenever they exist.
17. Prove that every u, v-walk contains $a \mathrm{u}, \mathrm{v}$-path.
18. Prove that the number of odd degree vertices in a given graph is even.
19. Prove that an edge is a cut edge if and only if it belongs to no cycle.
20. Prove that a tree with n vertices has $n 1$ edges.
21. If G is a simple graph, then prove that

$$
k(G) \quad(G)<\delta(G) .
$$

22. Let G be a simple planar graph with atleast three vertices. If G is triangle-free, then prove that $e(\mathrm{G}) 5 n(\mathrm{G})-4$, where e (G) and $\mathrm{n}(\mathrm{G})$ denote the number of edges and vertices in G respectively.
23. Find a grammar that generates the language fan $\left.\mathbf{b}^{\mathbf{e n}}: n>0\right\}$.
24. Let $\mathrm{E}=\{a, b, c\}$. Construct a deterministic finite acceptor that accepts that language $a \Sigma * b$.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Answer any two from the following four questions (25-28).
Each question has weightage 4.
25. (a) Prove that every finite Boolean algebra is isomorphic to a powerset Boolean algebra.
(b) Write the Boolean function

$$
f\left(x_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}+x_{3}^{\prime}+x_{2} x_{1} \quad+x_{1}^{\prime} x_{3}\right)
$$

in their disjunctive normal form.
26. Prove that the complete graph $\mathrm{K}_{t c}$ can be expressed as the union of k bipartite graphs if and only if $\mathrm{n} \leq 2^{\mathrm{k}}$.
27. (a) Prove that every connected graph contains a spanning tree.
(b) If a connected plane graph G has exactly n vertices, e edges and f faces, then prove that $\mathrm{n}-e+f=2$.
28. (a) Let (Q, E, 6, $\left.q_{\mathrm{u}}, \mathrm{F}\right)$ be a deterministic finite acceptor accepting the language L. Prove that $(\mathrm{Q}, \mathrm{E}, 6, \mathrm{go}, \mathrm{Q}-\mathrm{F})$ accepts the language $\mathrm{E}^{*}-\mathrm{L}$.
(b) Let G_{M} be the transition graph of some deterministic finite acceptor M. If $L(M)$ is infinite, then prove that G_{M} must have at least one cycle for which there is a path from the initial vertex to some vertex in the cycle.

$$
\text { (} 2 \times 4=8 \text { weightage), }
$$

