\qquad

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

 (CUCSS)Mathematics
MT 1C 03-REAL ANALYSIS—I

Time : Three Hours

Maximum : 36 Weightag

Part A

Short answer questions (1-14)
Answer all questions.
Each question has 1 weightage.

1. Prove that balls are convex.
2. Give an example of a perfect set which is bounded.
3. Prove that $d\left(\left(x_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right)=\max \left\{\left|\mathbf{x}^{1}-\mathbf{x}_{2} \mathbf{I}, \mathbf{I} \mathbf{y}_{1}-\mathbf{y}_{2}\right|\right\}$ is a metric on \mathbf{R}^{2}.
4. Let E^{\prime} be the set of limits points of a set E. Prove that E^{\prime} is closed.
5. Does there exists a continuous real valued function f on $[0,11$ such that f is not uniform continuous? Justify your answer.
6. Let $f \rightarrow \mathbb{R}$ be a function defined by $f(x)=[x]$, where $[x]$ denotes the greatest integer $l e$ than or equal to \mathbf{x}. What type of discontinuities does the function f have ?
7. Prove that differentiable functions are continuous.
8. Let f be a differentiable function on $[\mathrm{a}, \mathrm{b}]$ such that $f^{\prime}(x)=0$ for all $\mathrm{x} \mathrm{E}(a, b)$. Prove that constant.
9. Evaluate $\lim _{x} \frac{\sin \left(\frac{\pi}{2} x\right)}{x-2}$
10. Let f be a function on $[a, b]$ such that $\mid f \mathbf{I}$ is Riemann integrable on $[a, b](I f \mid \in \mathcal{R}$ on $f \mathbf{E} \mathscr{R}$ on $[a, b]$? Justify your answer.
11. Let $f \mathrm{E} \mathcal{R}$ on $[\mathrm{a}, b]$ and for $a S x \quad$ b let $\mathrm{F}(x)=\int_{a}^{x} f(t) d t$. Prove that F is continu
12. Let y be a curve in the complex plane, defined on $[0,2 \pi]$ by $y(t)=e^{i t}$. Find the lens
13. Define equicontinuity and give an example of it.
14. State Stone-Weierstrass theorem.

Part B

$$
\begin{aligned}
& \text { Answer any seven from the following ten questions (15-24) } \\
& \text { Each question has weightage } 2 .
\end{aligned}
$$

15. Prove that everyinfinite subset of a countable set is countable.
16. Prove that finite intersection of open sets is open. Is arbitrary intersection of open sets open ? Justify your answer.
17. If E is an infinite subset of a compact set K, then prove that E has a limit point in K.
18. Prove that monotonic functions have no discontinuities of the second kind.
19. Let f be a differentiable function on (a, b). If $f(x) \leq 0$ for all $\mathrm{x} \mathrm{E}(a, b)$, then prove that f is monotonically decreasing.
20. Let a be a monotonically increasing function and f be a bounded function on $[a, b]$. Prove that

$$
f d 0 \quad f d \alpha
$$

21. For $1<s<\infty$, let $\zeta(s)=\underset{\mathrm{no}}{n^{s}} \frac{1}{}$ Prove that $(s)=\mathrm{s} \int_{i}^{\infty} \frac{[x,}{x}$ where $[\mathrm{x}]$ denotes the largest integer less than or equal to x .

Let $\left\{f_{n}\right\}$ be a sequence of real valued Riemann integrable functions on a set E such that $f_{n} \rightarrow f$ as $n \rightarrow 0$. Is it true that $J f_{n} \quad f$? Justify your answer.

Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
Let $\left\{f_{r}\right\}$ be a sequence of equicontinuous functions on a compact set K . If $\left\{f_{r}\right\}$ converges pointwise n K , then prove that $f_{\text {, }}$, converges uniformly on K .

Part C

Answer any two from the following four questions (25-28)
Each question has weightage 4.
that a subset E of \quad is connected if and only if it satisfies the following : If $\mathrm{x}, \mathrm{y} \mathrm{E} \mathrm{E}$ and y , then $z \mathrm{E}$ E.
a bounded real function on $[a, b]$ and a be monotonically increasing on $[a, b]$. If f has navy discontinuities on $[a, b]$ and a is continuous at every point at which f is discontinuous, re that f Riemann-Stieltjes integrable with respect to a on $[a, b]$.
27. Prove that there exists a real continuous function on the the real line which is nowhere differentiable.
28. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on a compact set K . If $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on K , then prove that
(a) $\left\{f_{n}\right\}$ is uniformly bounded on K.
(b) $\left.\quad f_{n}\right\}$ contains a uniformly convergent subsequence.
($2 \times 4=8$ weightage)

