FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 1C 04-ODE AND CALCULUS OF VARIATIONS

Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries 1 weightage.

1. Find a power series solution of the form $\sum a_{n} x$ of the differential equation $y^{\prime}+y=1$.

2: Determine the nature of the point $\mathbf{x}=-1$ for the equation $\mathbf{x}^{2}\left(x^{2}-1\right)^{2} y^{n}-2(x-1) y^{\prime}+3 x y=0$.
3. Find the indicial equation and its roots of the equation $x^{3}+(\cos 2 x-1)+2 x y=$.
4. Find the general solution of the equation $\left(2 x^{2}+2 x\right) y^{\prime \prime}+(1+5 x) y^{\prime}+\mathbf{y}=0$ near the singular point $\mathbf{x}=0$.
5. Find the first two terms of the Legendre series of the function

$$
f(x)=\begin{gathered}
0 \text { if }-15 _x<0 \\
x \text { if } \quad 0 \leq x \leq 1
\end{gathered}
$$

6. Prove that for an integer $m \quad 0, J_{-m}(x)$ and $J_{m}(x)$ are linearly dependent.
7.. Prove that $\left.\frac{d}{d x} \quad \mathrm{~J}(x)\right]=x^{p} J_{p-1}(x)$.
7. Describe the phase portrait of the system $\frac{d x}{d t}=-\boldsymbol{x}, \frac{d y}{d t}=-\mathbf{y}$.
8. Find the critical points of the non-linear system :

$$
\frac{d x}{d t}=-x, \quad \frac{d y}{d t}=2 \mathbf{x}^{2} \mathbf{y}^{2}
$$

10. Show that $(0,0)$ is an asymptotically stable critical point of the system :
$\begin{array}{llll}d x & 3 x 3 & y, \\ d t & & d y & x^{5}-2 y^{3}\end{array}$
11. Find the normal form of Bessel's equation $r^{2} v^{\prime \prime} \quad x y^{\prime}+\left(\begin{array}{ll}\mathrm{x} 2 & \mathrm{p} 2\end{array}\right)^{y}$ o.
12. State sturm comparison theorem.
13. Show that $f(\mathrm{x}, \mathrm{y})=x y$ satisfies a Lipschitz condition on any rectangle $a \leq x \leq b$ and $c \quad y \leq d$.
14. Find the extremal for the integral $\underset{x}{\|} y^{2} y^{-1} d x$.
(14 x $1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Find the series solution $\mathrm{y}(\mathrm{x})$ of the. differential equation $\mathrm{y}^{\prime \prime}+\quad-x y=0$ satisfying the condition $\mathrm{y}(\mathrm{O})=0, y^{\prime}(O)=1$.
16. Find the only Frobenins series solution of the equation $x^{2}-3 x y^{\prime}+(4 \mathrm{x}+4) y=0$.
17. Determine all the regular singular points of the hyper geometric equation $\mathrm{x}(1-\mathrm{x}) \mathrm{y}^{\prime \prime}+[c-(a+b+1) x] \quad-a b y=0$.
18. Show that if $p_{n}(x)$ is defined by $p_{n}(x) \quad \mathrm{n} 1 \quad\left(x^{-}-1\right)$, then $p_{n}(\mathrm{x})$ satisfies the Legendre's equation $\left(1-x^{2}\right)^{n}-2 x y^{\prime}+n(n+1) y=0$, where n is a non-negative integer.
19. Show that between any two positive zeros of $\mathrm{J}_{0}(\mathrm{x})$ there is a zero of $\mathrm{J}_{1}(x)$ and that between any two positive zeros of $J_{1}(x)$ there is a zero of $J_{0}(x)$.
20. If $f(\mathrm{x})$ is defined by $\mathrm{f}(x)=$
 where the $\lambda_{\text {, }}$'s are the positive zeros of $\mathrm{J}_{0}(\mathrm{x})$.
21. Determine the nature and stability properties of the critical point $(0,0)$ for the system :

$$
d t=4 \mathrm{x}-2 y, \frac{d_{2}}{d t}=5 \mathrm{x}+2 y
$$

22. Show that if $q(x)<0$, and $u(x)$ is a nontrivial solution of $\quad+q(x) u=0$, then $\mathrm{u}(\mathrm{x})$ has at most one zero.
23. Using the method of Lagrange multipliers, show that the triangle with greatest area A for a given perimeter is equilateral.
24. Find the exact solution of the initial value problem $y^{\prime}=2 x(1+y), y(0)=0$. Starting with $y_{v}(x)=0$, apply Picard's method to calculate $y_{1}(x), y_{2}(x), y_{5}(x)$ and compare these results with the exact solution.

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Discuss the general solution of the huper geometric equation
$\mathrm{x}(1-\mathrm{x}) \mathrm{y}^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$ near the singular point $x=0$.
26. State and prove the orthogonality property of the Legendre polynomials.
27. Find the general solution of the system :

$$
d x=7 x+6 y, d t-2 x+6 y
$$

28. Obtain Euler's differential equation for an extremal.
