D 92954

(Pages: 3)

Name

Reg. No.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 1C 05—DISCRETE MATHEMATICS

Time : Three Hours

Maximum : 36 Weightage

Part A (Short Answer Questions)

Answer **all** questions. Each question carries 1 weightage.

- Let X be a set and < be a binary relation on X which is reflexive and transitive. Define a binary relation R on X by x R y if and only if x y and y x. Is R an equivalence relation ? Justify your laim.
- 2 Define a Boolean algebra. Give an example of a finite Boolean algebra.
- 3. Define atoms of a power set Boolean algebra P (X). Illustrate it with an example.
- 4. Write the conjunctive normal form of (xy + x'y + x') (x + y).
- 5. Define a dfa and its transition graph. Illustrate.
- 6. Find a dfa for the language $L = \{a^n b : n > 0\}$.
- 7. Find a nfa which accepts the set of all strings containing 'aabb' as a substring.
- 8. Find the language accepted by the following automaton :

- 9. Define Petersen graph. Find the girth of Petersen graph.
- 10. Prove that every u v walk contains a u v path.

Turn

- 11. In any graph G, prove that 5 (G) $\leq 2 \frac{e(G)}{n(G)} \leq \Delta(G)$.
- 12. In any graph G with n(G) > 1, prove that every minimal disconnecting set of edges is an edge cut.
- 13. If G is a plane graph then prove that $\sum l(\mathbf{F}_i) = 2 e(\mathbf{G})$, where $l(\mathbf{F}_i)$ denotes the length of the face F.
- 14. Find a graph G in which the strict inequality k(G) < k'(G) < 5 (G), holds.

(14 x 1 = 14 weightage)

Part B

Answer any seven from the following ten questions (15-24). Each question carries 2 weightage.

- 15. If x and y are elements of a Boolean algebra, prove that $x = y \Leftrightarrow x y' + x' y = 0$.
- 16. Let (X_1, \leq_1) and (X_2, \leq_2) be partially ordered sets. Define < on $X_1 \times X_2$ by $(x_1, x_2 \times (y_1, y_2))$ if and

only if $x_1 5_1 y_1$ and $x_2 \le_z y_z$. Verify whether (X₁ x X₂, <1 s a partially ordered set. Is it totally ordered ? Justify your claim.

- 17. Prove that the power set of any set partially ordered by inclusion is a lattice.
- 18. Find a regular expression for the language L {w E $\{0,1\}^*$: w has no pair of consecutive zeros}.
- 19. Find a regular expression for the language $L = \{a^n n + m \text{ is even}\}$.
- 20. Prove that every closed walk contains an odd cycle.
- 1. Characterize a family of graphs G_i with $k(G_i) = k'(GO_i)$.
 - . Define self complementary graph and decomposition of a graph. Describe a relation between them and illustrate it with an example.

Determine the values of m and n such that $K_{m,n}$ is Eulerian.

Let G be a connected graph with at least three vertices. Form G' from G by adding an edge with endpoints x, y whenever $d_{i}(x, y) = 2$. Prove that G' is 2-connected.

(7 x 2 = 14 weightage)

Part C

3

Answer any two from the following four questions (25-28). Each question carries 4 weightage

25. Let (X, +, ., .') be a Boolean algebra. Prove that

- (a) Every non-zero element of X contains at least one atom.
- (b) Every two distinct atoms of X are mutually disjoint.
- 26. Let L be the language accepted by the nfa MN = (Q_N , E, δ_N , q_U , F_N). Prove that there exists a dfa

 $M_D = (Q_D, E, 0_D, \{q_U\}, FD)$ such that $L = L (M_D)$.

27. (a) Prove that every connected graph contains a spanning tree.

(b) If every vertex of a graph G has degree at least three, prove that G has a cycle of even length.

28. (a) If G is a simple graph prove that $k(G) \le k'(G) \le \delta(G)$.

(b) Determine all r and s such that $K_{r,s}$ is planar.

 $(2 \times 4 = 8 \text{ weightage})$