Name
Reg. No.-.............

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 1C 05-DISCRETE MATHEMATICS

Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Questions)

Answer all questions.
Each question carries 1 weightage.

1. Let X be a set and < be a binary relation on X which is reflexive and transitive. Define a binary relation R on X by $x R y$ if and only if $x y$ and $y x$. Is R an equivalence relation ? Justify your入aim.

2 Define a Boolean algebra. Give an example of a finite Boolean algebra.
3. Define atoms of a power set Boolean algebra $P(X)$. Illustrate it with an example.
4. Write the conjunctive normal form of $\left(x y+x^{\prime} y+x^{\prime} \quad(x+y)\right.$.
5. Define a dfa and its transition graph. Illustrate.
6. Find a dfa for the language $\mathrm{L}=\left\{a^{n} b: n>0\right\}$.
7. Find a nfa which accepts the set of all strings containing ' $a a b b$ ' as a substring.
8. Find the language accepted by the following automaton :

9. Define Petersen graph. Find the girth of Petersen graph.
10. Prove that every $u v$ walk contains a uvpath.
11. In any graph G, prove that $5(\mathrm{G}) \leq 2 \underset{\mathrm{n}(\mathrm{G})}{e \underline{(G)}} \leq \Delta(\mathrm{G})$.
12. In any graph G with $n(G)>1$, prove that every minimal disconnecting set of edges is an edge cut.
13. If G is a plane graph then prove that $\sum l\left(\mathrm{~F}_{l}\right)=2 e(\mathrm{G})$, where $l\left(\mathrm{~F}_{i}\right)$ denotes the length of the face F .
14. Find a graph G in which the strict inequality $k(G)<k^{\prime}(G)<5(G)$, holds.
($14 \times 1=14$ weightage)

Part B

Answer any seven from the following ten questions (15-24). Each question carries 2 weightage.
15. If x and y are elements of a Boolean algebra, prove that $x=y \Leftrightarrow x y^{\prime}+x^{\prime} y=0$.
16. Let $\left(\mathrm{X}_{1},<_{1}\right)$ and $\left(\mathrm{X}_{2},<_{2}\right)$ be partially ordered sets. Define $<$ on $\mathrm{X}_{1} \times \mathrm{X}$, by $\left(\mathrm{x}_{1}, \mathrm{x}_{2} 5_{-}\left(y_{1}, y_{2}\right)\right.$ if and only if $x_{1} 5_{-1} y_{1}$ and $\mathrm{x}_{2} \leq_{2} y_{L}$. Verify whether $\left(\mathrm{X}_{1} \times \mathrm{X}_{2},<1 \mathrm{~s}\right.$ a partially ordered set. Is it totally ordered ? Justify your claim.
17. Prove that the power set of any set partially ordered by inclusion is a lattice.
18. Find a regular expression for the language $L\left\{w \in\{0,1\}^{*}\right.$: whas no pair of consecutive zeros $\}$.
19. Find a regular expression for the language $L=\left\{a^{n} \quad: n+m\right.$ is even $\}$.
20. Prove that every closed walk contains an odd cycle.

1. Characterize a family of graphs G_{i} with $k(\mathrm{G})=,k^{\prime}(\mathrm{GO}$.
. Define self complementary graph and decomposition of a graph. Describe a relation between them and illustrate it with an example.

Determine the values of m and n such that $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is Eulerian.
Let G be a connected graph with at least three vertices. Form G^{\prime} from G by adding an edge with endpoints x, y whenever $d_{\mathrm{G}}(\mathrm{x}, \mathrm{y})=2$. Prove that G^{\prime} is 2 -connected.

Part C

Answer any two from the following four questions (25-28).
Each question carries 4 weightage
25. Let ($\mathrm{X},+, .$,) be a Boolean algebra. Prove that
(a) Every non-zero element of X contains at least one atom.
(b) Every two distinct atoms of X are mutually disjoint.
26. Let L be the language accepted by the nfa $M N=\left(Q_{N}, E, \delta_{N}, q_{U}, F_{N}\right)$. Prove that there exists a dfa $M_{D}=\left(Q_{D}, E, 0_{D},\left\{q_{u}\right\}, F D\right)$ such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}_{\mathrm{D}}\right)$.
27. (a) Prove that every connected graph contains a spanning tree.
(b) If every vertex of a graph G has degree at least three, prove that G has a cycle of even length.
28. (a) If G is a simple graph prove that $k(G) \leq k^{\prime}(\mathrm{G})<\delta(\mathrm{G})$.
(b) Determine all r and s such that $\mathrm{K}_{\mathrm{r}, \mathrm{s}}$ is planar.

