\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013 (CUCSS)
Mathematics

MT 10 02—LINEAR ALGEBRA
 (2010 admissions)

Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Type)

Answer all questions.
Each question carries weightage 1.

1. Let V be a vector space over a field F . Prove that if 0 e V and CEF then $0.0=0$.
2. Prove that $\mathrm{U}=\{(x, x): \times \mathrm{E}\}$ is a subspace of R^{2}.
3. Verify whether the set of all upper triangular matrices span the space of all 2×2 matrices.
4. Find the dimension of the space of all $n \times n$ diagonal matrices over R.
5. Find the co-ordinate vector of $(1,2,3) e$
with respect to the ordered basis $41,2,0),(1,1,0),(0,1,1)\}$.
6. Verify whether $f(x, y)=x y$ for $(\mathrm{x}, \mathrm{y})|\mathrm{E}| \mathbf{R}^{2}$ is a linear transformation from R^{2} to R .
7. Let $\mathrm{W}=\operatorname{span}\{(1,1,0),(1,0,1)\}$. Let f he definted by $\mathrm{I}(x, \mathrm{y}, z)=x-y-z$. Verify whether f belongs to W^{0}.
8. Find the characteristic polynomid of
9. Find the characteristic values of $\left|\begin{array}{ll}\mathbf{1} & 2 \\ 0 & 2\end{array}\right|$
10. Let $\mathrm{W}=\operatorname{span}\{(1,1,1)\}$ in R^{3} and $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be defined by $\mathrm{T}(x, y, z)=(\mathrm{x}+\mathrm{y}, \mathrm{y}+\mathrm{z}, 2 \mathrm{z})$. Verify whether W is an invariant subspace of T .
11. Let $\mathbb{W}_{1}=\operatorname{span}\{(1,2,1)\}$ and $\mathbb{W}_{2}=$ span $\{(2,1,1)\}$. Verify whether $\mathbb{W}_{1}+\mathbb{W}_{2}$ is a direct sum.
12. Verify whether $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(2 x+y, 0)$ is a projection.
13. Verify whether $(1,2),(-2,1)$ are orthogonal in R^{2}.
if E is an orthogonal projection of a space V on a subspace W, prove that $\operatorname{Null}(1-E)=W$.

Part B (Paragraph Type)

- Answer any seven questions.

Each question carries weightage 2.
15. Let $\mathrm{S} ;\{a, \beta\}$ be a subset of V , where V is a vector space. Prove that the set of all linear combinations of S is a subspace of V.
16. Verify whether $S=\{(\mathrm{x}, \mathrm{y}, x y): x \mathrm{e} \mathrm{R}\}$ is a subspace of \mathbb{R}^{3}.
17. If W_{1}, W_{2} are subspaces of a vector space V, prove that $W_{1}+W_{2}$ is a subspace of V.
18. Let V be a vector space of dimension n. Prove that any set of $n-\mathbf{1}$ vectors is not a basis of V.
19. Find the matrix of the linear transformation $T \mathbb{R}^{-} \boldsymbol{R}^{3}$ defined by $\mathrm{T}(x, y, z)=(x+y, x, y+z)$ with respect to the ordered basis $B=41,2,1),(1,1,2),(2,1,1)\}$.
20. Let $\left\{\alpha_{1}, \alpha_{i}, \ldots, a_{n}\right\}$ be a basis of a vector space V and $\mathbf{f}_{2} \quad \mathbf{f}_{n}$ be the dual basis of VA. Prove that $\alpha=f_{i}(a) \alpha_{\imath}$ for each a e V \bullet
21. Let T be a linear operator on a vector space V and for some a e V let $\mathrm{T}(a)=c a$. Prove that for any polynomial $f, f(T)(c) . \alpha$
22. Express R^{3} as a direct $\operatorname{sum} \mathrm{W}_{\perp} \oplus \mathrm{W}_{2}$, where $\mathrm{W}_{1}=\operatorname{span}\{(1,1,1)\}$.
23. Let T be a linear operator on a vector space $V=W_{1} \oplus \mathbf{W}_{2} \oplus \ldots \quad \mathbf{W}_{k}$; where each W_{l} is an invarian subspace for T. Prove that if each W_{\imath} is an eigen space of V then T is diagonalizable.
24. Verify whether $\left(\begin{array}{ll}\mathrm{x} & y\end{array}\right)$ given by $\left(\begin{array}{ll}x & \mathrm{y}\end{array}\right)=x_{1} y_{1} \quad x_{2} y_{2}$ for $\mathrm{x}=\quad, \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right) \mathbf{E} \mathbf{R}^{2}$ is an inner product.
($7 \times 2=14$ weightage)

Part C (Essay Type)

Answer any two questions.
Each question carries weightage 4.
25. Define dimension of a vector space. Show that if W_{1}, W_{2} are subspaces of a finite dimensional vector space, then $\operatorname{dim}\left(W_{1}+\mathbf{W}_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} \mathbf{W}_{2}-\operatorname{dim}\left(W_{1} n W_{2}\right)$.
26. Let A be an $m \times n$ matrix over a field F. Show that for any $n x 1$ matrix $X, T(X)=A X$ is a linear transformation from the space of $n \mathbf{x} 1$ matrices to the space of $m \mathbf{X} 1$ matrices. Prove also that rank $\mathrm{T}=$ column rank of A .
27. Define the annihilator W° of a subspace W. Let W_{1}, W_{2} be subspaces of a finite dimensional space V. Prove that if $W_{4}^{-}+W^{\circ}$ then $W_{1}=W_{2}$.
28. Define projection. Show that if E is a projection on a vector space V then $V=R \oplus N$ where R is range of E and N is the null space of E .

