\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014 (CUCSS)
Mathematics
MAT 1C 05-DISCRETE MATHEMATICS
Time : Three Hours
Maximum : 36 Weightage

> Part A (Short Answer Questions) (1-14)
> Answer all questions.
> Each question carries 1 weightage.

1. Define strict partial order and give an example of it. If R is a partial order on a set X, then prove that $\mathbf{R}-\{(\mathbf{x}, x): \times \mathrm{E} \mathbf{X}\}$ is a strict partial order on \mathbf{X}.
2. Prove that intersection of two chains is a chain.
3. Let $(\mathbf{X},+, ., \prime)$ be a Boolean algebra. Prove that $x+x=x$ for all $x \mathbf{E X}$.
4. Prepare the table of values of the following function :

$$
f\left(x_{1}, x_{2}, \mathbf{x}_{3}\right)=\mathbf{x i ~}_{2}\left(\mathbf{x i}+\mathbf{x}_{2}+x_{1} x_{\mathrm{y}}\right) .
$$

5. Define Chromatic number of a graph. Find the chromatic number of \mathbf{P}_{5}.
6. Prove that every graph with n vertices and k edges has at least $\mathrm{n}-k$ components.
7. If every vertex of a graph G has degree at least 2 , then prove that G contains cycle.
8. Prove that every tree with at least two vertices has at least two end leaves.
9. Define Connectivity of a graph. Prove that $k(K O=\mathbf{n}-1$.
10. Is every subgraph of a non-planar graph non-planar ? Justify your answer.
11. Let u be a string on the alphabet E. Prove that $|u \mathrm{I}=\mathrm{n}| u \mid$ for all $\mathrm{n}=1,2$,
12. Let $\mathbf{G}=(\{\mathbf{S}\},\{\mathrm{a}, b\}, \mathbf{S}, \mathrm{P})$ be a grammar with productions \mathbf{P} given by

$$
\mathbf{S} \rightarrow a \mathbf{A}, \mathbf{A} \rightarrow b \mathbf{S}, S \rightarrow \mathbf{X} .
$$

Give a simple description of the language generated by \mathbf{G}.
13. Define non-deterministic acceptor and give an example of it.
14. Find the set of strings accepted by the following deterministic finite acceptor.

($14 \times 1=14$ weightage)

Part B

Answer any seven from the following ten questions (15-24).
Each question carries weightage 2.
15. Let ($X,+, .$,) be a Boolean algebra. Prove that the corresponding lattice (X, is complemented and distributive.
16. Let ($X,+, .,{ }^{\prime}$) be a finite Boolean algebra. Prove that every non-zero element of X contains at least one atom.
17. Prove that the characteristic numbers of a symmetric Boolean function completely determine it.
18. Prove that Petersen graph has diameter 2.
19. Prove that every, u, v-walk contains a u, v-path.
20. Let \mathbf{G} be a graph. Prove that

$$
{ }^{8}(\mathrm{G})<{ }_{\mathbf{n}(\mathbf{G})}^{2 e(\mathrm{G})}<\mathbf{A}(\mathbf{G}),
$$

here $e(G)$ and $n(G)$ denote the number of edges and vertices in G respectively.
21. Draw a graph \mathbf{G} with $k(G)<k^{\prime}(\mathbf{G})<\delta(\mathbf{G})$.
22. Is Euler's formula valid for a disconnected graph ? Justify your answer.
23. Find a grammar that generate the language $\left\{a^{n+2} b: n\right.$
24. Construct a nondeterministic acceptor that accepts the language $\{a b, a b c\}^{*}$.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Each question carries weightage 4.
25. (a) Let ($X,+, ., '$) be a finite Boolean algebra. Prove that every element of X can be uniquely expressed as sum of atoms.
(b) Write the Boolean function :

$$
f(\mathbf{a}, b, c)=\mathbf{a}+b+c^{\prime} .
$$

in their disjunctive normal form.
26. (a) Prove that a graph is a bipartite graph if and only if it has no odd cycle.
(b) Let G be a graph. Prove that

$$
\sum_{\mathrm{vE} \mathrm{~V}(\mathrm{G})} d(v)=2 \mathrm{e}(\mathrm{G}) .
$$

27. Let \mathbf{G} be an n-vertex graph with n 1 . Prove that the following are equivalent :
(a) G is connected and has no loops.
(b) G is connected and has $\mathrm{n}-1$ edges.
(c) G has $\mathrm{n}-1$ edges and no cycles.
(d) G has no loops and has, for each $u, v \in V(G)$, exactly one u, v-path.
28. Define equivalent grammars. Prove that the grammar $\mathbf{G}=\{a, b, \mathbf{S}, \mathbf{P})$ with productions \mathbf{P} given by :

$$
\mathrm{S} \rightarrow \mathrm{SS}|\mathrm{SSS}| a \mathrm{~S} b|b \mathrm{~S} a| \lambda,
$$

is equivalet to the grammar $G^{\prime}=\left(\{\mathbf{S}\},\{a, b\}, S, P^{\prime}\right)$ with production p^{\prime} given by :

$$
\mathrm{S} \rightarrow \mathrm{SS}|a \mathrm{~S} b| b \mathrm{~S} a \mid \lambda
$$

