\qquad
\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014 (CUCSS)

Mathematics
MT 1C 01—ALGEBRA - I

Time : Three Hours
Maximum :36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Define the group of symmetries of a subset S of R^{2} in R^{2} and give an example of it.
2. Find the subgroups generated by $\{4,6\}$ in $\Delta_{1 z}$.
3. Find all subgroups of $Z_{2} \times Z_{2} \times Z_{4}$ that are isomorphic to the Klein 4-group.
4. Let $u=1101010111$ and $\mathbf{v}=\mathbf{0 1 1 1 0 0 1 1 1 0}$. Find $\mathbf{u}+\mathbf{v}$ and $w t(u-v)$.
5. Find all abelian groups, upto isomorphism of order 16.
6. Let X be a G-set for $x_{1}, x_{2} E X$, let $x_{1}-x_{2}$ if there exists $g{ }_{\mathrm{E}} G$ such that $g x_{1}=x_{2}$. Show that \sim is a symmetric relation on X.
7. Find all Sylow 3 -subgroups of \mathbf{S}_{4}.
8. Show that the center of a group of order 8 is non-trivial.
9. Find the reduced form and the inverse of the reduced form of the word $\mathbf{a}^{2} \mathbf{a}^{-3} \mathbf{b}_{\mathbf{a}} \mathbf{a}_{\mathrm{c}} 4 \mathrm{c}^{2} \mathbf{a} \mathbf{- 1}$.
10. Define the evaluation homomorphism.
11. Find all generators of the cyclic multiplicative group of units of the field Z_{7} -
12. Let \mathbf{Q} be the skew field of quaternions. Write the element $(i+j)$ in the form $a_{1}+a_{z} i+a_{5} j+a_{4} k$ for $a_{\imath} \varepsilon \mathbf{R}$.
13. Find all zeros of $x^{3}+2 x+2$ in Z_{7}.
14. Find all ideals \mathbf{N} of \mathbf{Z}_{12}.

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Find the order of the element $(2,0)+((4,4))$ in $Z_{6} \times Z_{8} /\langle(4,4))$
16. Show that a subgroup M of a group G is a maximal normal subgroup of G iff \mathbf{G} is simple.
17. Give isomorphic refinements of the two series :
$\{0\}<60 Z<20 Z<Z$ and $\{0\}<245 Z<49 Z<Z$.
18. Show that if $\mathrm{H}_{\mathrm{o}}=\{\mathrm{e}\}<\mathrm{H}_{1}<\mathrm{H}_{2}<\ldots<\mathrm{H}_{t}=\mathrm{G}$ is a subnormal series for a group G , and if $\mathrm{H}:+1$ H_{i} is of finite order $\mathbf{S}_{\mathbf{i}}+1$. Then G is of finite order $S_{i}, S_{2}, \ldots S_{i}$.
19. Let G be a finite group and X a finite G -set. Show that if r is the number of orbits in X under G , then :

$$
\mathbf{r} \mathbf{G}=\sum_{g \mathrm{cG}} \mathrm{I} \mathrm{X}_{o}
$$

20. Show that for a prime number p, every group G of order p^{2} is abelian
21. Show that there are no simple groups of order 255 .
22. Show that $\left(a, b: a^{3}=1, b^{2}=1, b a=a^{2} b\right)$ gives a non-abelian group of order 6 .
23. Demonstrate that $\mathrm{x}^{4}-22 \mathrm{x}^{2}+\mathbf{1}$ is irreducible over Q .
24. Give the addition and multiplicative tables for the group algebra $Z_{2}(G)$, where $G=\{a, b\}$ is cyclic of order 2.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Show that the group $Z_{m} \times Z_{r t}$ is isomorphic to $Z_{m, t}$ iff m and n relative prime. Deduce that if x is any integer written as $\mathrm{n}=\left(\begin{array}{lll}p_{1}^{r_{1}} & \left(p_{2}\right)^{\prime} 2 & \left(p_{m} \quad \text {, where } \mathrm{p}_{\mathrm{i}} \text { 's are distinct primes then } \mathrm{Z}_{n} \text { is isomorphic }\right.\end{array}\right.$ to $\left.{ }_{\mu}\right)_{r_{1}} \times \mathrm{Z}_{\left.p_{2}\right) r_{2}} \times \ldots \times \mathrm{Z}_{\left(\mu_{m}\right) r_{r .}}$.
26. Let H be a subgroup of a group G . Prove that the following conditions are equivalent :

$$
\text { ghg } \varepsilon \mathrm{H} \text { for all } \mathrm{g} \varepsilon \mathrm{G} \text { and } h \varepsilon \mathrm{H} \text {. }
$$

(ii) $\quad \mathrm{H}$ for all $\mathrm{g} \varepsilon \mathrm{G}$.

$$
\mathrm{gH}=\mathrm{H}_{\mathrm{g}} \text { for all } \mathrm{g} \varepsilon \mathrm{G}
$$

Give an example of a subgroup H of a group G which does not satisfy condition (iii).
27. State and prove Cauchy's theorem using Cauchy's theorem, prove that a finite group G is a p-group iff $I G \mid$ is a power of p.
28. State and prove Eisenstein's theorem using Eisenstein's theorem, prove that the cyclotomic polynomial :

is irreducible over Q for many prime p.

$$
(2 \times 4=8 \text { weightage })
$$

