\qquad

Reg. No

\qquad
FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics
MT 1C 02—LINEAR ALGEBRA

Time : Three Hours
Maximum : 36 Weightage

Part A (Short Answer Type)

Answer all questions.
Each question has weightage 1.

1. Let V be a vector space over a field F and $1_{\mathbf{E}} \mathrm{F}$. Prove that $(-1) \mathrm{v}=-\mathrm{v}$ for all $\mathbf{v} \mathbf{E} \mathbf{v}$ •
2. Show that $\mathrm{U}=\{(\mathrm{x}, \mathrm{O}): x \mathbf{E} \mathbf{R}\}$ is a subspace of R^{2}.
3. Verify whether $\{(1,2,3),(1,3,1)\}$ is a basis for R^{3}.
4. Give au example of a 2-dimensional subspace of R^{3}.
5. Find the co-ordinate vector of $(1,2,3) \mathbf{E} \mathbf{R}^{\mathbf{3}}$ with respect to the basis $\{(1,1,0),(1,0,1),(0,1,1) 1$.
6. Let $\mathrm{T}: \mathrm{R} 2-1 \mathrm{R} 2$ be defined by $\mathrm{T}(x, y)=(x+1, \mathrm{y}+1)$. Verify whether T is a linear transformation.
7. Let $W=\operatorname{span}\{(1,0,0),(1,1,0)\}$. Find a non-zero linear function in W^{0}.
8. Find the characteristic polynomial of $\begin{array}{r}{[2 \mathrm{O}} \\ 2.1\end{array}$
9. Find the characteristic values of $\begin{array}{cc}1 & 0 \\ {\left[\begin{array}{ll}0 & 2\end{array}\right]^{\circ}}\end{array}$
10. Verify whether $W=\{(x, 0,0): x \mathbf{E} \mathbb{R}\}$ is an invariant subspace of $T R^{3} \mathbb{R}^{3}$ given by : $\mathrm{T}(x, y, z)=(x+y, y+z, z)$.
11. Let $\mathrm{W}_{1}=\operatorname{span}\{1,2,1\}$ and $\mathrm{W}_{2}=\operatorname{span}\left\{(2,1,1), \quad\right.$. Verify whether $\mathrm{W}_{1}+\mathrm{W}_{2}$ is a direct sum.
12. Verify whether $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ defined by $\mathrm{T}(x, y)=(x+y, 0)$ is a projection.
13. Let V be an inner product space. Prove that II ca $\|=\left.\right|_{\text {c I II a II for } \times \mathrm{E} \text { V. }}$.
14. If E is an orthogonal projection of V onto W , prove that $a-E_{a E} W^{\perp}$ for all $x E V$ •
(14×1=14 weightage)

Part B (Paragraph Type)

Answer any seven questions.
Each question has weightage 2.
15. Prove that $(1,2,3) E R^{3}$ is a linear combination of $a=(1,2,1)$ and $\beta=(1,2,2)$.
16. Verify whether $S=\left\{(x, x — E \mathbb{R}\}\right.$ is a subspace of R^{2}.
17. If W_{1}, W_{2} are subspaces of a vector space V, prove that $W_{1} n W_{2}$ is a subspace of V.
18. Let V be a vector space of dimension n . Prove that any set of $n+1$ vectors of V is linearly dependent.
19. Find the matrix of the transformation $\mathrm{T}: \mathrm{R}^{3} \quad \mathbf{R}^{3}$ given by $\left.\mathrm{T}(x, y, z)=x+y, x+z, y+z\right)$ relative to the ordered basis $B=\{(1,1,0),(\mathbf{0}, \mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{0}, \mathbf{1}))$.
20. Let $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \quad, \mathrm{a}_{\mathrm{n}}\right\}$ be a basis of a vector space V and $\left\{\mathrm{f}_{1}, \mathrm{f}_{2}, \quad, f_{l}\right\}$ be the dual basis of V^{*}. Prove that $\mathbf{f}=\sum_{=} f\left(\alpha_{\imath}\right) f_{i}$ for each $f \in V^{*}$.
21. Show that similar matrices have same characteristic polynomial.-
22. Express R^{2} as a direct sum of two one-dimensional subspaces.
23. Let T be a linear operator on a vector space V and let $\mathrm{V}=\mathrm{W}_{1} 10 \ldots 8 \mathrm{~W}_{\mathrm{k}}$, where each W_{ι} is invariant under T. Prove that if each W_{l} is one-dimensional then T is diagonalizable.
24. Verify whether $(x I y)$ defined as $(x y)=x_{1}+y_{1}$ is an inner product for :
$x=\left(\mathrm{x}_{1}, \quad=(\mathrm{YDY} 2) \mathrm{E} \mathrm{R}^{2}\right.$

Part C (Essay Type)
Answer any two questions.
Each question has weightage 4.

25. (a) Define linearly independent set in a vector space.
(b) Let A be an $n \times n$ matrix over a field F. Prove that if the row vectors of A form a linearly independent set then A is invertible.
26. Let V be a finite dimensional vector space and $\mathrm{T}: \mathrm{V}$-f V be a linear operator. Prove that the following are equivalent :
(i) T is invertible.
(ii) T is one-to-one.
(iii) T is onto.
27. (a) Define the annihilator W^{0} of a subspace W of a vector space V.
(b) Show that if V is finite dimensional then $\operatorname{dim} \mathrm{W}+\operatorname{dim} W^{0}=\operatorname{dim} V$.
28. (a) Prove that an orthogonal set of non-zero vectors is linearly independent.
(b) Let W be a subspace of an inner product space V and $\beta E V$. Show that $C C E w$ is a best approximation to f 3 if and only if 13 -a $\mathrm{E} W{ }^{\prime}$.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

