D 72886

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 1C 02-LINEAR ALGEBRA

Time : Three Hours-

Maximum : 36 Weightage

Part A (Short Answer Type)

Answer **all** questions. Each question has weightage 1.

- 1. Let V be a vector space over a field F and $1 \mathbf{E} \mathbf{F}$. Prove that (-1) $\mathbf{v} = -\mathbf{v}$ for all $\mathbf{v} \mathbf{E} \mathbf{v}$.
- 2. Show that $U = \{(x,0) : x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 3. Verify whether $\{(1,2,3), (1,3,1)\}$ is a basis for \mathbb{R}^3 .
- 4. Give au example of a 2-dimensional subspace of R^3 .
- 5. Find the co-ordinate vector of $(1,2,3) \in \mathbb{R}^3$ with respect to the basis $\{(1,1,0), (1,0,1), (0,1,1)\}$.
- 6. Let T: R2 1R2 be defined by T(x, y) = (x + 1, y + 1). Verify whether T is a linear transformation.
- 7. Let $W = \text{span}\{(1,0,0), (1,1,0)\}$. Find a non-zero linear function in W^0 .
- 8. Find the characteristic polynomial of $\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$
- 9. Find the characteristic values of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.
- 10. Verify whether $W = \{(x,0,0): x \in \mathbb{R}\}$ is an invariant subspace of T R³ \mathbb{R}^3 given by :

T(x, y, z) = (x + y, y + z, z).

Turn over

(Pages:3)

- 11. Let $W_1 = \text{span} \{1, 2, 1\}$ and $W_2 = \text{span} \{(2, 1, 1), \dots, N_n\}$
- 12. Verify whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, 0) is a projection.
- 13. Let V be an inner product space. Prove that II ca $\| = |_{c I}$ II a II for $x \in \mathbf{V}$.
- 14. If E is an orthogonal projection of V onto W, prove that $a E_{a \in W^{\perp}}$ for all $x \in V$.

 $(14 \times 1 = 14 \text{ weightage})$

. Verify whether $W_1 + W_2$ is a direct sum.

Part B (Paragraph Type)

Answer any **seven** questions. Each question has weightage 2.

- 15. Prove that $(1,2,3) \in \mathbb{R}^3$ is a linear combination of a = (1,2,1) and $\beta = (1,2,2)$.
- 16. Verify whether $S = \{(x, x \in \mathbb{R}) \mid \text{ is a subspace of } \mathbb{R}^2 \}$.
- 17. If W_1 , W_2 are subspaces of a vector space V, prove that W_1 n W_2 is a subspace of V.
- 18. Let V be a vector space of dimension n. Prove that any set of n + 1 vectors of V is linearly dependent.
- 19. Find the matrix of the transformation $T : \mathbb{R}^3 \mathbb{R}^3$ given by T(x, y, z) = x + y, x + z, y + z relative to the ordered basis $B = \{(1,1,0), (0,1,1), (1,0,1)\}$.
- 20. Let $\{a_1, a_2, \dots, a_n\}$ be a basis of a vector space V and $\{f_1, f_2, \dots, f_n\}$ be the dual basis of V^{*}.

Prove that $\mathbf{f} = \sum_{i=1}^{n} f(\alpha_i) f_i$ for each $f \in V^*$.

- 21. Show that similar matrices have same characteristic polynomial.-
- 22. Express R^2 as a direct sum of two one-dimensional subspaces.
- 23. Let T be a linear operator on a vector space V and let $V = W_1 10 \dots 8 W_k$, where each W_t is invariant under T. Prove that if each W_t is one-dimensional then T is diagonalizable.
- 24. Verify whether (x I y) defined as $(x y) = x_1 + y_1$ is an inner product for :

 $x = (x_1, = (YDY2) \in \mathbb{R}^2$

 $(7 \times 2 = 14 \text{ weightage})$

Part C (Essay Type)

Answer any two questions. Each question has weightage 4.

- 25. (a) Define linearly independent set in a vector space.
 - (b) Let A be an n x n matrix over a field F. Prove that if the row vectors of A form a linearly independent set then A is invertible.
- 26. Let V be a finite dimensional vector space and $T: V \rightarrow f V$ be a linear operator. Prove that the following are equivalent :
 - (i) T is invertible.
 - (ii) T is one-to-one.
 - (iii) T is onto.
- 27. (a) Define the annihilator W^0 of a subspace W of a vector space V.
 - (b) Show that if V is finite dimensional then dim $W + \dim W^0 = \dim V$.
- 28. (a) Prove that an orthogonal set of non-zero vectors is linearly independent.
 - (b) Let W be a subspace of an inner product space V and $\beta E V$. Show that $_{CC E W}$ is a best approximation to f3 if and only if 13— a $_{E W}$.

 $(2 \times 4 = 8 \text{ weightage})$