\qquad
Reg. No \qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics
MT 2C 07-REAL ANALYSIS - II

Time : Three Hours
Maximum : 36 Weightage

Part A

Short answer questions.
Answer all questions.
Each question has 1 weightage.

1. Let $A \in L(\mathbb{R},-)$ and $B E L\left(\mathbb{R}, \mathbb{R}^{`}\right)$. Prove that $\|B A\|\|B\|\|A\|$.
2. Let X and Y be vector spaces and let $A E L(X, Y)$ be such that for all $x E X A x=0$ implies $x=0$. Prove that A is one to one.
3. Let $\mathbf{f} \mathbb{R}^{-} \rightarrow \mathbf{R}^{\mathbf{1}}$ be given by $f(x, y, z)=\mathbf{x}^{3}+\mathbf{y}^{3}+z^{3}+x^{2}+y^{2}+z^{2}$. Find the gradient of f at $(2,3,1)$.
4. State inverse fu ion theorem.
5. Let $f=\left(f_{\boldsymbol{l}}, f_{2}\right) \longrightarrow$ - mapping of $\mathbf{R}^{\mathbf{2}}$ into $\mathbf{R}^{\mathbf{2}}$ given by $\mathbf{f}_{l}(\mathbf{x}, \mathbf{y})=e^{x} \cos y, 1_{2}(x, y)=e x \sin y$. Show that the Jacobian of f is not zero at any point of \mathbf{R}^{2}.
6. Let $A t$ be a a-algebra and let $\left\{\mathrm{E}_{i}\right\}$ be a sequence of elements in A. Prove that

$$
\bigcap_{i=1} \mathrm{E}_{\imath} \mathrm{E}
$$

7. Prove that if $m^{*}(\mathrm{~A})=0$, then $\mathrm{m}^{*}(\mathrm{~A} u \mathrm{~B})=\mathrm{m}^{*}(\mathrm{~B})$.
8. Let $\left\{\mathrm{E}_{l}\right\}$ be a sequence of disjoint measurable sets and A be any set. Prove that :

$$
m^{*}\left(\mathrm{~A} \cap \mathbf{U} \mathrm{E}_{\imath}=\underset{i=1}{\mathbf{m}^{*}}\left(\mathbf{A} \cap \mathrm{E}_{i}\right)\right.
$$

9. Is the characteristic function $\mathbf{X}(0,1)$ measurable ? Justify your answer.
10. Let f and g be measurable functions defined on a set E of finite measure. If $f=g$ a.e., then prove that $\int_{\mathrm{E}} f=\int_{\mathrm{E}} g$.
11. Let f be a measurable function. Prove that f^{+}and f are measurable. Also prove that $f=f^{+}-\mathrm{f}-$.
12. Let $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ be a sequence of measurable functions such that $f_{n} \rightarrow f$ in measure. If $f_{n} \rightarrow f$ a.e. ? Justify your answer.
13. For functions f and g, prove that $\mathbf{D}_{+}(f+g) \quad \mathbf{D}_{+} f+\mathbf{D}_{+} g$.
14. If f is absolutely continuous on $[a, b]$ and if $f(x) \neq 0$ for all $\mathrm{xe}[\mathrm{a}, b]$, then prove that 1 is absolutely continuous on $[\mathrm{a}, \mathrm{M}$.
$(14 \times 1=14$ weightage $)$

Part B

Answer any seven from the following ten questions.
Each question has weightage 2.
 derivative $\left(\mathrm{D}_{u} f\right)(0,0)$ exists.
16. Let $[A]_{\perp}$ be the matrix obtained from the matrix $[A]$ by interchanging two columns. Prove that $\operatorname{det}[\mathrm{A}]_{1}=-\operatorname{det}[\mathrm{A}]$.
17. Prove that the outer measure is translation invariant.
18. Let E be a measurable set and let $\mathrm{E}>0$. Prove that there is an open set 0 DE such that $m^{*}(\mathrm{O} \mathrm{E})<\mathrm{E}$.
19. Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots . \mathrm{E}_{九}$ be a disjoint collection of measurable sets and let $\varphi=a_{i} m\left(\mathrm{E}_{i}\right)$. If $\mathrm{m}\left(\mathrm{E}_{\mathrm{s}}\right)<\infty$ for each i, then prove that $\int \varphi={ }_{\mathrm{i}=1} a_{l} m\left(\mathrm{E}_{i}\right)$.
20. Let $f[0,1] \mathbf{I} \mathbf{1}$ be given by $f(x)=\frac{0 \text { if } \mathrm{x} \text { is rational }}{\mathbf{n} \text { if } x \text { is irrational }}$ where n is the number of zeros immediately after decimal point in the representation of \mathbf{x}. Show that f is measurable and evaluate $\int_{[0,}$
21. Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions that converge to f and let $f_{n} s f$ for each n. Prove that $\int f=\lim \int f_{n}$.
22. Show that if f is integrable over a measurable set E , then $\mathrm{I} \int f \mid \quad$ When does equality occur ? Justify your answer.
23. If f is of bounded variation on $[a, b]$, then prove that $f^{\prime}(x)$ exists for almost all x in $[a, b]$.
24. Prove that absolutely continuous functions on $[a, b]$ are of bounded variation on $[a, M$.
(7 $\times 2=14$ weightage $)$

Part C

Answer any two from the following four questions.
Each question has weightage 4.
25. Let E be an open set and let $f \mathrm{E} \rightarrow \mathbb{R}^{m}$ be a mapping differentiable at a point $\mathrm{x} E \mathrm{E}$. Prove that the partial derivatives $\left(\mathrm{D}_{\mathbf{i}} \mathrm{n}\right)(\mathrm{x})$ exist and $f^{\prime}(x) e_{J}=\sum_{=1}\left(\mathrm{D}_{J} f_{i}\right)(x) u_{\imath}$ where $1 \quad j \quad \mathrm{n}$.
26. (i) Prove that there exists a non-measurable set.
(ii) Prove that Cantor set is of measure zero.
27. (i) Prove that for each a $\mathrm{E} E \mathrm{t}$, the interval (a, ∞) is measurable.
(ii) Let f and g be non-negative measurable functions defined on a measurable set E . Prove that $\int f+\mathrm{g}=\int_{\mathrm{E}} f \int_{\mathrm{E}} g$.
28. (i) Let $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ be a sequence of measurable functions that converges in measure to f. Prove that there is a subsequence $\left\{f_{t_{k}}\right.$ that converges to f almost everywhere.
(ii) Let f be an integrable function on $[\mathrm{a}, \mathrm{b}]$ and let $\mathrm{F}(\mathrm{x})=\mathrm{F}(\mathrm{a})+\int_{\mathrm{a}} f(t) d t$. Prove that $\mathrm{F}^{\prime}(\mathrm{x})=f(x)$ for almost all x in $[a, b]$.

