SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics
 MT 2C 10—NUMBER THEORY

Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries a weightage of 1.

1. Find all integers \mathbf{x} such that $\varphi(n)=((2 n)$.
2. Show that $9(m n)=\varphi(m) \varphi(n)$ if $(m, n)=1$.
3. Define completely multiplicative function.
4. Define divisor functions $\sigma_{u}(n)$ for $\mathbf{n} 1$ and show that they are multiplicative.
5. If f and g are arithmetical functions, then show that $(f * g)^{\prime}=f^{\prime} * g+f * g^{\prime}$.
6. Show that if $\mathrm{a}>0$ and $b>0$, then $\lim \frac{(a x) \text { a }}{\pi^{2}(b x) b}$
7. Let $(\mathbf{a}, \mathbf{m})=1$. Show that the linear congruence $a x \equiv b(\bmod \boldsymbol{m})$ has exactly one solution.
8. Determine the quadratic residues and non-residues modulo 11.
9. Determine those odd primes p for which 3 is a quadratic residue.
10. Show that if p is an odd positive integer then $\left.(2 / p)=(-1)^{p_{-}-\frac{1}{8}}\right)$.
11. Prove that the product of two linear enciphering transformations is also a linear enchiphering transformation.
12. Write a short note on enciphering key.
13. What is classical cryptosystem?
14. State the map coloring problem and translate it to a graph coloring problem.

$$
\text { (14 x } 1=14 \text { weightage) }
$$

Part B

Answer any seven questions.
Each question carries a weightage of 2.
15. Show that for $n 1, \varphi(n)=n \prod_{p / n}\left(1-\frac{1}{p}\right)$.
16. Let f be a multiplicative function. Show that f is completely multiplicative iff $\mathbf{f}^{\mathbf{- 1}}(\mathbf{n})=\mu(\mathbf{n}) f(\mathbf{n})$ for all $\mathbf{n} 1$.
17. State and prove Euler's summation formula.
18. Show that for $x \geq 2 ; \underset{p<x}{T}\left[\frac{x}{p}\right] \log p=\mathrm{x} \log x-\mathrm{x}+0(\log x)$.
19. Show that for any prime $p \quad 5 ; \sum_{k=1}^{1(n-1)!}=O\left(\bmod p^{2}\right)$.
20. Let p be an odd prime. Show that for all n; $\left(n / \frac{(p-1}{2}\right)(\bmod p)$.
21. Show that given any integer $k>0$ there exists a lattice point (a, b) such that none of the lattice points $(\mathbf{a}+r, b+s), 0<r \leq k, 0<s \leq k$ is visible from the origin.
22. Find the inverse of $A=\left(\begin{array}{ll}n & 3 \\ 7 & 8\end{array}\right) E M 2\binom{Z}{26 Z}$.
23. Solve the following system of simultaneous congruences :
$17 x+11 y \equiv 7(\bmod 29)$
$13 x+10 y \equiv 8(\bmod 29)$.
24. Write a note on the ElGamal cryptosystem.

Part C

Answer any two questions.
Each question carries a weightage of 4.
25. Show that the set of all arithmetical functions f with $f(1) \neq \mathbf{0}$ forms an abelian group with respect to the Dirichlet product.
26. Let $p_{r c}$ deonte the nth prime. Prove that the following are equivalent :
(i) $\underset{\mathbf{x}-\mathrm{o}}{\cdot} \frac{(\underline{x}) \underline{\log } \mathbf{x}}{\boldsymbol{x}}-\mathbf{1}$.
(ii) $\lim _{x \rightarrow \infty} \underline{\pi(x) \underline{\log ' \operatorname{It}(\mathbf{x})}}=1$.
(iii) $\lim _{n \rightarrow \infty} n \log \mathbf{n}-1$.
27. State and prove Quadratic reciprocity law.
28. Let $A=\left(\begin{array}{ll}b \\ a & d\end{array}\right) E M 2(\mathrm{Z} / \mathrm{NZ})$ and set $\mathrm{D}=\mathrm{a}$. Prove that the following are equivalent :
(a) $\mathrm{g} \mathrm{c} \mathrm{d}=(\mathrm{D}, \mathrm{N})=\mathbf{1}$.
(b) A has an inverse.
(c) If x and y are not both 0 in $\underset{\mathrm{NZ}}{\mathrm{Z}}$, then $\mathrm{A} \left\lvert\, \mathrm{y} \neq\left(\begin{array}{l}n\end{array}\right.$. \right.
(d) A gives a one to one correspondence of $\left(\frac{\mathrm{Z}}{\mathrm{NZ}}{ }^{\mathbf{2}}\right.$ with itself.

