(Pages: 3)
Name \qquad
Reg. No......................

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

 (CUCSS)Mathematics
MT 2C 07-REAL ANALYSIS—II
Time : Three Hours
Maximum : 36 Weightage

Part A

Short answer questions 1-14. Answer all questions.
Each question has 1 weightage.

1. L et X be a vector space and let $\operatorname{dim} X=\mathrm{n}$. Prove that a set E of n vectors spans X if and only if E is independent.
2. Let AEL \quad) and let $x \mathbf{E} \mathbb{R}^{n}$. Prove that $A^{\prime}(x)=\mathrm{A}$.
3. Define contraction mapping on a metric space and give an example of it.
4. Let $f=\quad f_{2}$) be the mapping of \mathbf{R}^{2} into \mathbf{R}^{2} given by

$$
f l(x, \mathrm{y})=\mathrm{ex} \cos y, f 2(x, \mathrm{y})=\mathrm{ex} \sin \mathrm{y}
$$

Show that the Jacobian of f is not zero at any point of \mathbf{R}^{2}.
5. Find the Lebesgue outer measure of the set $\left\{1 \pm \frac{{ }^{*}}{2^{n}}: \mathbf{n}=\mathbf{1}, 2,3, \ldots\right\}$.
6. Let A and B be measurable sets such that A C B. Prove that $m^{*}(A)<m^{*}(B)$.
7. Is the set of irrational numbers in the interval $[1,100]$ measurable? Justify your answer.
8. Prove that constant functions are measurable.
9. Give an example where strict inequality occur in Fatou's lemma.
10. Show that if f is integrable, then so is $|f|$.
11. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions defined on a measurable set E of finite measure. If $f_{n} \mathcal{F}$ a.e., then prove that $\left\{f_{n}\right\}$ converges to f in measure.
12. Show that $D^{+}[-f(x)]=-D_{+} f(x)$.
13. Show that if a $<c<b$, then $T_{a}^{b}=T_{a}^{c}+T_{c}^{o}$.
14. Prove that sum of two absolutely continuous functions is continuous. ($14 \times 1=14$ weightage)

Part B

Answer any seven from the following ten questions (15-24).
Each question has weightage 2.
15. Let Ω be the set of all invertible linear operators on \mathbb{R}^{-}. Prove that 1 is an open subset of $L\left(\mathrm{R}^{n}\right)$
16. Let

$$
f(x, y)=\left\{\begin{array}{lr}
0 & \text { if }(x, y)=(0,0) \\
\frac{x}{x^{2}+y^{2}} & \text { if }(x, y) \quad(0,0)
\end{array}\right.
$$

Prove that $\left(\mathrm{D}_{\mathrm{i}} f\right)(x, \mathrm{y})$ and $\left(D_{z} f\right)(x, \mathrm{y})$ exist at every point of $1 \mathrm{R}^{2}$.
17. If E_{1} and $\boldsymbol{E} \boldsymbol{2}$ are measurable, then prove that

$$
m\left(E_{1} \mathrm{U} \text { E} 2\right) \quad m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right) \quad m\left(E_{2}\right)
$$

18. Prove that sum of two measurable functions defined on a same measurable set is measurable.
19. Prove that the characteristic function χ_{E} is measurable if and only if E is measurable.
20. Let E1, E2, , E_{n} be disjoint measurable sets and let $c 0=\sum_{i=1} a_{i} \chi_{E_{i}}$. Prove that $\int \varphi=\sum_{i=1} a_{i} m\left(E_{i}\right)$.
21. Let E be a measurable set and let f, g be integrable over E. Prove that $f+g$ is integrable over E and

$$
\int_{E} f+g=\int_{E} g
$$

22. Let f be a function defined by

$$
f(x) \quad \begin{array}{rr}
\text { if } x=0 \\
x \sin \left(\frac{1}{x}\right) & \text { if } x L 0
\end{array}
$$

Is f differentiable at $x=0$? Justify your answer.
23. If f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$, then prove that $f^{\prime}(x)$ exists for almost all x in $[\mathrm{a}, \mathrm{b}]$.
24. If f is absolutely continuous on $[\mathrm{a}, \mathrm{bb}$ then prove that f is of bounded variation on $[a, b]$.

Part C

Answer any two from the following four questions (25-28).
Each question has weightage
25. (a) Let E be an open subset of \mathbb{R}^{n} and f maps E into m . If f is differentiable at a point $\mathrm{x} \mathrm{E} E$, then prove that the partial derivatives $\left(D_{i} f_{2}\right)(\mathrm{x})$ exist.
(b) If $[\mathrm{A}]$ and $[\mathrm{B}]$ are n by n matrices, then prove that

$$
\operatorname{detail}][B])=\operatorname{det}[A] \operatorname{det}[B]
$$

26. (a) Prove that outer measure of an interval is its length.
(b) Let $\left\{E_{i}\right\}$ be a sequence of measurable sets. Prove that

$$
\mathrm{m}\left(\mathrm{U} E_{\imath}\right) \leq m\left(E_{\imath}\right)
$$

27. (a) State and prove bounded convergence theorem.
(b) Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions and $f_{n}(x) \boldsymbol{f}(\boldsymbol{x})$ almost everywhere on a set E. Prove that

$$
{ }_{E} \mathrm{fn} \quad \lim \int_{E} f_{n} .
$$

28. Let f be an increasing real valued function on the interval $[a, b]$. Prove that f is differentiable almost everywhere, the derivative f^{\prime} is measurable and

$$
f^{\prime}(x) 5 f(b)-(a) .
$$

