SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013 (CUCSS)

MT 2C 07-REAL ANALYSIS—II

Time : Three Hours

Maximum : 36 Weightage

Part A
Short answer questions (1-14).
Answer all questions. Each question has one weightage.
(1) Let A $\mathrm{E} L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Prove that A is a uniformly continuous mapping of \mathbb{R}^{n} into \mathbb{R}^{m}.
(2) Prove that the set of all invertible linear operators Ω on \mathbb{R} is an open subset of $L(\mathbb{R})$.
(3) Ler $f: R^{2} \rightarrow \mathbb{R}^{1}$ be defined by $f(x, y)=2 \mathrm{x}^{3}-3 \mathrm{x}^{2} 2 \mathrm{y}^{3} 3 \mathrm{y}^{2}$ for $(x, \mathrm{y}) \mathrm{E} \mathrm{R}^{2}$. Find the gradient of f at $(2,3)$.
(4) Define contraction mapping and give an example of it.
(5) Find the outer measure of the set of irrational numbers in the interval [3, 5J.
(6) Prove that finite sets are measurable.
(7) Let f be a continuous real valued function defined on a measurable set E. Prove that f is measurable.
(8) Let $\varphi(x)=\left\{\begin{array}{l}1 \text { if } 0<x<1 \\ 2 \text { if } 1<x<2 \\ 0 \text { otherwise. }\end{array}\right.$

Evaluate φ.
(9) Let f and g be bounded measurable functions defined on a set E of finite measure. If $f<g$ a.e., then show that $\int_{E} f<f$.
(10) Show that if f is integrable over a measurable set E, then If I is integrable over
E.
(11) Define convergence in measure. If $\}$ is a sequence of measurable functions defined on a mesurable set E of finite measure and $f_{n} \quad \mathbf{f}$ a.e., then prove that fn\} converges to f in measure.
(12) If f is of bounded variation on $[a, b]$, then prove that

$$
T_{a}^{b}=P_{u}^{b}+N d
$$

(13) Show that $D^{+}[-f(x)]=-\left[D_{+} f(x)\right]$.
(14) If f is absolutely continuous on [a, bb then prove that f is of bounded variation on $[a, b]$.
($14 \times 1=14$ weightage)

Part B

Answer any seven from the following ten questions (15-24).
Each question has weightage 2 .
(15) Let X be a vector space of dimension n. Prove that a set E of n vectors in X spans X if and only if E is independent.
(16) Let $f(x, y)= \begin{cases}0 & \text { if } x=0 \\ \text { if }(x, y) \quad(0,0) .\end{cases}$

Prove that $\mathbf{D}_{\mathbf{i}} f$ and $\mathbf{D} 2 f$ are bounded functions in \mathbf{R}^{2}. Also prove that f is
continuous.
(17) Prove that a linear operator A on \mathbb{R}^{-}is invertible if and only if $\operatorname{det}[A] 0$.
(18) Let C be a collection of subsets of a set X. Prove, that there exists a smallest algebra O containing C.
(19) Show that for any set A and any $\epsilon>0$, there is an open set O containing A such that $m^{*}(Q)<\mathrm{m}^{*}(\mathrm{~A}) \quad \epsilon$.
(20) Prove that if E is a measurable set, then each translte $E \quad y$ of E is also measurable.
(21) Let f and g be real valued measurable functions defined on the same domain. Prove that $f+g$ is measurable
(22) Let $\left\{f_{n}\right\}$ be an increasing sequence of nonnegative measurable functions and let $f=\lim f_{n}$ a.e.. Prove that $\int f=\lim \int f_{n}$
(23) If f and g are integrable over a measurable set E, then prove that $f+g$ is integrable over E and $\int_{E}(f \quad g)=\int_{E} f+\int_{E} g$.
(24) If f is of bounded variation on $a, b]$, then prove that $f^{\prime}(x)$ exists for almost all x in $[\mathrm{a}, \mathrm{b}]$.
($7 \times 2=14$ weightage)

Part C

Answer any two from the following four questions (25-28).
Each question has weightage 4.
(25) (i) Prove that a linear operator \boldsymbol{A} on a finite dimensional vector space \boldsymbol{X} is one to one if and only if the range of A is all of X.
(ii) If $[A]$ and $[B]$ are \mathbf{n} by \mathbf{n} matrices, then prove that

$$
\operatorname{det}([B][A])=\operatorname{det}[B] \operatorname{det}[A] .
$$

(26) Prove that the Lebesgue outer measure of an interval is its length.
(27) State and prove bounded convergence theorem.
(28) Prove that a function \boldsymbol{F} is an indefinite integral if and only if it is absolutely continuous.

