SECOND SEMESTER M.Sc. DEGREE EXAMINATION, AUGUST 2013

 (CUCSS)Mathematics
MT 2C 10—NUMBER THEORY

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question has weightage 1.

1. Define Möbius function $\mu(n)$ and show that $\frac{t(d)}{d / n}=0$ if $\mathrm{n}>$
2. Define Mangoldt function $\wedge(n)$ and express $\wedge(n)$ in terms of logarithm.
3. Give an example of a multiplicative function which is not completely multiplicative.
4. Let f be an arithmetical function with $f(1) \neq 0$. Show that $\left(f^{-}\right)=-f^{\prime *}\left(f^{*} f^{-1}\right)^{1}$.
5. Derive Selberg identity.
6. Prove that $[2 \mathrm{x}]-[2 \mathrm{y}]$ is either 0 or 1 .
7. Calculate the highest power of 10 that divides 1000 !.
8. Show that the linear congruence $2 x \equiv 3(\bmod 4)$ has no solutions.
9. Determine the quadratic residues and non-residues modulo 7.
10. Let $(\mathrm{a}, \mathrm{m})=1$. Show that $a^{\mathrm{d/m})} \equiv 1(\bmod \mathrm{~m})$.
11. Determine whether - 104 is a quadratic residue or non-residue of the prime 997.
12. What is cryptosystem?
13. Prove that the product of two shift enciphering transformations is also a shift enciphering transformation.
14. How do we send a signature in RSA ?

Part B

Answer any seven questions.
Each question has weightage 2.
15. Show that if -4 , then 4$)(n)=\sum_{d / n}$
16. Let f be a multiplicative function. Show that f is completely multiplicative if $\boldsymbol{f} \quad(n)=\mu(n) f(n)$ for all $n \geq 1$.
17. Show that if $x 1$, then we have $\sum_{n \leq x} \frac{1}{c}=\log x+c+0\left(\frac{1}{x}\right)$.
18. Show that if $x>2$, then we have $\sum_{n \leq x} \mathrm{~A}(n)\left[\frac{x}{n}=x \log x-x+0(\log x)\right.$.
19. Show that for $x 2, \pi(x)=\frac{5(x)}{\log x} \int_{2} \frac{\left(t_{2}\right.}{t \log ^{-} t} d t$.
20. Show that for any prime p all the co-efficients of the polynomial $\mathbf{f}(x)=(x-1)(x-2) \ldots$ $(x-p+1)-x^{p-1}+1$ are divisible by p.
21. Show that the Legendre's symbol (n / p) is a completely multiplicative function of n.
22. Show that if p is an odd positive integer then :
(a) $(-1 / p)=(-1)$
(b) $(2 / \mathrm{p})=(-1)^{\left(n^{2}-1\right) / 8}$.
23. In the 27-letter alphabet (with blank $=26$), use the affine enciphering transformation with key $\mathbf{a}=13, b=9$ to encipher the message "HELP ME".
24. Solve the following system of simultaneous congruences :

$$
\begin{gathered}
x+4 y 1(\bmod 9) \\
5 x+7 y 1(\bmod 9)
\end{gathered}
$$

Part C

Answer any two questions.
Each question has weightage 4.
25. For every integer n 2 , prove that $\begin{aligned} & 1 \text { 1n } \\ & 6 \log \#\end{aligned}<\pi(n)<6_{\log \mathrm{n}}$.
26. State and prove Lagrange's theorem.
27. State Gauss' lemma. Let m be the number defined in Gauss' lemma. Show that

$$
\sum_{t=1}^{\left(\begin{array}{l}
2
\end{array}\right)}+(\mathbf{n - 1})\left(-\frac{2}{-\underline{8}}(\bmod 2)\right.
$$

28. Find the discrete \log of 28 to the base 2 in $F_{3,}$ using the Silver-Pohlig-Hellman algorithm.
