\qquad
Reg. No.

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

 (CUCSS)Mathematics
MT 2C 06—ALGEBRA—II
Time: Three Hours
Maximum : 36 Weightage

Part A

Answer all questions (1-14)
Each question has weightage 1.

1. Verify whether $(0,3)$ is an ideal of $\mathbf{Z}_{\mathbf{6}}$.
2. Verify whether $\{(0,2 n): n \mathrm{E}$ Z1 if a prime ideal of $\mathbf{Z} \times \mathbf{Z}$.
3. Verify whether the field Z_{5} is an extension of the field Z_{3}.
4. Verify whether $\mathbf{Q} \quad$ is an algebraic extension of \mathbf{Q}.
5. Which of the following real numbers is constructible a a $\sqrt[4]{3}$.
6. Verify whether $9: Q(\sqrt{2}) \quad \mathbf{Q} \sqrt{3}$ defined by $a+b \sqrt{2} \mapsto a+b \sqrt{3}$ for $\mathbf{a}, \boldsymbol{b} \mathbf{E} \mathbf{Q}$ is an isomorphism of fields.
7. Show that the field \mathbf{R} of reals is not algebrically closed.
8. Let a be the real cube root of 2 . Verify that $Q(\alpha)$ is not a splitting field.
9. Find the order of the group $G(Q)(\mathrm{a}) /(\mathrm{Q})$ where a is the real cube root of 2 .
10. Give an example of an infinite field of characteristic 2.
11. Describe the Galois group $G(Q(\sqrt{2}) / Q)$.
12. Let K be a finite field of 8 elements and $F=\mathbf{Z}_{2}$. Give the order of the Galois group $G(K / F)$.
13. Define the nth cyclotomic polynomial.
14. Give an example of a solvable group.

Part B

Answer any seven questions from the following questions (15-24).
Each question has weightage 2.
15. Find all prime ideals of the ring Z_{8}.
16. Let R be a ring with identity. Show that the map $\varphi: \mathrm{Z} \rightarrow \mathrm{R}$ defined by $\varphi(n)=n \cdot 1$ is a homomorphism.
17. Let $p(x)=x^{2}+1 \mathrm{E} \mathrm{Q}[\mathrm{x}]$. Let $\mathbf{I}=\langle p(x)\rangle$ be the ideal generated by $p(x)$. Show that $\mathrm{x}+\mathrm{I}$ is a zero of $p(x)$ in $\mathrm{Q}[x] / \mathrm{I}$.
18. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}-1 \mathrm{E} \mathrm{Q}[\mathrm{x}]$. Let $\mathrm{a} \notin \mathrm{Q}$ be a zero of $f(x)$. Find the degree $[\mathrm{Q}(\mathrm{a}): \mathrm{Q}]$.
19. Let a be a zero of $\mathrm{x}^{2}+1 \mathrm{E} \mathrm{Z} 3[\mathrm{x}]$. Find the number of elements in $\mathrm{Z}_{3}(\mathrm{a})$.
20. Let a be a automorphism of Q

Id) with $\mathrm{a}(\sqrt{2})=\sqrt{2}$ and $\mathrm{a}(\sqrt{3}) \sqrt{3}$. Find the fixed field of a.
21. Let $\boldsymbol{f}(\mathrm{X}) \mathrm{EQ}[x]$ be irreducible and a, β be zeros of $f(x)$ in Q . Let τ be an automorphism of Q Such that $\mathrm{t}(\mathrm{a})=\beta$. Let $\mathrm{T}_{\mathrm{x}}: \mathrm{Q}[\mathrm{x}] \rightarrow \mathrm{Q}[x]$ be the natural isomorphism with $\tau_{\lambda}(\mathrm{x})=x$. Show that $\tau_{\lambda}(f(x))=f(x)$.
22. Let F E K and K be a finite normal extension of a filed F . Show that K is a normal extension of E .
23. Let K be a field of a 9 elements and let $\mathrm{F}=\mathrm{Z}_{3}$. Show that $\mathrm{a}: \mathrm{K} \mathrm{K}$ defined by $a(a)=\mathrm{a}^{3}$ for $a E K$ is an automorphism of K leaving F fixed.
24. Let K be the splitting field of $x^{4}+I$ over Q. Show that $G(K / Q)$ is of order 4 .

$$
\text { (7 } \times 2=14 \text { weightage) }
$$

Part C

Answer any two questions from the following questions (25-28).
Each question has weightage 4.
25. Define maximal ideal. Show that if R is a commutative ring with identity and if M is a maximal ideal of R then R / M is a field. Give an example of a commutative ring R with identity, a maximal ideal M of R and describe the field R / M.
26. Let E be an extension of a field F and let a E E. Prove that
(a) $\quad \mathrm{pa}: \mathrm{F}[\mathrm{x}] \mathrm{E}$ defined by $f(x) \mapsto f($ a) for $f(x)$ e $\mathrm{F}[\mathrm{x}]$, is a homomorphism.
(b) If a is algebraic over F then $\operatorname{Ker}\left(\mathrm{pa}_{\mathrm{a}} \neq(0)\right.$.
(c) If a is transcendental over F then (pa is one-to-one.
27. Define separable extension. Show that every finite extension of a field of characteristics zero is a separable extension.
28. Define normal extension. Let be a field and $\mathrm{F} \leq \mathrm{E} \leq \mathrm{K} \leq \overrightarrow{\mathrm{F}}$. Show that if K is a normal extension of F then K is a normal extension of E .

Show that $G(K / E)$ is a subgroup of $G(K / F)$.

