\qquad
Reg. No. \qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

 (CUCSS)
Mathematics
 MT 2C 09-PDE AND INTEGRAL EQUATIONS

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

1. Determine a partial differential equation satisfied by all surfaces of revolution with z-axis as the axis of revolution.
2. Show that $2 z=(a x+y)^{2}+b$ is a complete integral of $p x+q y-q^{2}=0$.
3. Find the integral of the equation $y d x+x d y+2 z d z=\mathbf{0}$.
4. Determine the region \mathbf{D} in which the two equations $x p-y q-x=0$ and $x^{\wedge} p+q-x z=0$ are compatible.
5. Determine the Monge cone in the case of $p^{2}+q^{2}=\mathbf{1}$ with vertex $(0,0,0)$.
6. Show that if $\mathrm{f}(z)=u(x, y)+i V(x, y)$ is analytic in $z=x+i y$, then u and v satisfy Laplace's equation in two variables.
7. What is the domain of dependence in the case of a one-dimensional wave equation ?
8. State the Neumann problem.
9. Show that the solution to the Dirichlet problem is stable.
10. State Harnack's theorem.
11. Show that if $y^{\prime \prime}(x)=F(x)$ and y satisfies the end conditions $y(0)=0$ and $y(1)=0$, then $y(x)=\int_{0}^{1} \mathrm{~K}(x, \xi) \mathrm{F}(\xi) \mathrm{d}$, where : $K(x, y)\left\{\begin{array}{l}\xi(x-1) \text { when }<x \\ x(-1) \text { when }>x\end{array}\right.$
12. Show that the characteristic numbers of a Fredholm equation with a real symmetric Kernel are all real.
13. Show that the $\operatorname{Kernel} K(x)=,1+3 x$ has a double characteristic number associated with $(-1,1)$, with two independent characteristic functions.
14. Determine the resolvent Kernel associated with $\mathrm{K}(x, \xi)=\cos (x+\mathrm{in}(0,27 \mathrm{r})$, in the form of a power series in A,
(14 $\times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Find the general integral of the equation $(y+1) p+(x+1) q=z$.
16. Explain Charpit's method to find a complete integral of the equation $f(x, y, z, p, q)=0$.
17. Find a complete integral of the equation $p^{-} x+q^{2} y=z$ by Jacobi's method.
18. Find the integral surface for the differential equation :
$z\left(x_{\alpha_{x}}-y_{\alpha_{y}}=\mathrm{y}^{2}-\mathrm{x}^{2}\right.$ passing through $(2 s, s, s)$.
19. Obtain D'Alembert's solution which describe's the vibrations of an infinite string.
20. Reduce the equation $\left.u_{x x}-4 x^{-} u_{y v}=\right\rceil_{x} u_{x}$ into Canonical form.
21. Solve $u_{\tau}=u_{\iota \jmath}, \mathbf{0}<x<l, t>0$

$$
\begin{aligned}
& u(0, t)=u(l, t)=\mathbf{0} \\
& u(x, 0)=x(l
\end{aligned}
$$

22. Transform the problem :
$\frac{d y}{d x^{2}}+y \quad \mathrm{x}, \mathrm{y}(0)=1, \mathrm{y}(1)=0$
to a Fredholm integral equation.
23. Solve the Fredholm integral equation by iterative method:

$$
y(x)=\lambda \int x \xi y(\xi) d \xi+1 .
$$

24. Write a short note on Neumann series.

Part C
Answer any two questions.
Each question carries 4 weightage.
25. Show that a necessary and sufficient condition that the Pfaffian differential equation :
$\overrightarrow{\mathrm{X}} \cdot d \vec{r}=P(x, \mathrm{y}, z) d x+\mathrm{Q}(x, \mathrm{y}, z) d y+\mathrm{R}(x, \mathrm{y}, z) d z=0$
be integrable is that $(\overrightarrow{\mathrm{X}} \cdot \operatorname{curl} \overrightarrow{\mathrm{X}})=0$.
26. Find the solution of the equation :

$$
z={ }^{1}\left(p^{\sim}+q^{-}\right)+\left(\begin{array}{ll}
p & x
\end{array}\right)\left(\begin{array}{ll}
q & y
\end{array}\right)
$$

which passes through the x -axis.
27. Show that the solution for the Dirichlet problem for a circle of radius a is given by the Poisson integral formula.
28. (a) Show that the characteristic values of λ for the equation :

$$
y(x)={ }_{0}^{2 \mathrm{n}} \sin (x+\xi) y(\xi) d \xi
$$

are $X_{i}=1 / \pi$ and $x_{2}=-1 / \pi$, with corresponding characteristic functions of the form $y_{1}(\mathrm{x})=\sin \mathrm{x}+\cos x$ and $\mathrm{y}_{2}(x)=\sin \mathrm{x}-\cos x$
(b) Obtain the most general solution of the equation $y(x)=x \int_{0}^{2 \pi} \sin (x+\xi) y O d \xi+F(x){ }_{w} h_{e n}$ $\mathrm{F}(\mathrm{x})=\mathrm{x}$ and and when $\mathrm{F}(\mathrm{x})=1$, under the assumption that $\mathrm{X} \neq \pm 1 / \pi$

