\qquad

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Mathematics
MT 2C 10—NUMBER THEORY

Part A

Answer all questions.
Each question carries 1 weightage.

1. Let $(\mathrm{m}, \mathrm{n})=d$. Prove that, for the Euler totient function $\phi, \phi\left(m_{\mathrm{n}} \quad \phi(\mathrm{m}) \cdot \phi(\mathrm{n}) \cdot{ }^{\prime} \mathrm{d}_{\phi(d)}^{\text {■ }}\right.$
2. Prove that the equation $\mathrm{f}(\mathrm{n})=\underset{d / n}{ } \boldsymbol{g}(\mathrm{~d})$ implies $g(\mathrm{n})=\underset{d / n}{\mathrm{f}}(\mathrm{d}) \cdot \mu\left(\frac{r}{d}\right)$.
3. If f and g are arithmetical functions, show that :

$$
(f * g)^{\prime}=\quad * g+f^{*} g
$$

4. For $\mathrm{x}>1$, prove that :

$$
\sum \wedge(n)\left[\frac{x}{n}\right]=\log [\mathrm{x}]!
$$

5. State Abel's identity.
6. Prove that congruence is an equivalence relation.
7. For any integer a and any prime p, prove that :
$a^{\prime} \equiv a(\bmod p)$.
8. State Chinese remainder theorem.
9. Let p be an odd prime. Prove that every reduced residue system $\bmod p$ contains exactly $(p-1) / 2$ quadratic residues and exactly $(p-1) 12$ quadratic non-residues $\bmod p$.
10. If P is an odd positive integer, prove that:
$(-1 / \mathrm{p})=(-1)^{1-1 / n}$.
11. In the 27-letter alphabet (with blank $=26$) use the affine enciphering transformation with key $\mathrm{a}=13, b=9$ to encipher the message "HELP ME".
12. What do you mean by an enciphering matrix ?
13. Explain how to send a signature in RSA cryptosystem?
14. What is oblivious transfer ?
($14 \times 1=14$ weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. If $\mathbf{n} \geq 1$, prove that :

$$
\phi(n)=n_{p / n}\left(1-\frac{-}{\mu}\right)
$$

16. Assume f is multiplicative. Prove that $f^{-} \mathbb{K (n) f (n)}$ for every square free \mathbf{n}.
17. If $x \geq 1$, prove that :

$$
\sum_{n \geq x} \frac{1}{n}=\log x+C+O\left(\begin{array}{l}
1 \\
\frac{1}{n} \\
x
\end{array}\right)
$$

18. For $\mathrm{n}>1$, prove that the nth prime P_{n} satisfy the inequality :
$\frac{1}{6} n \log n<p_{\text {، }}<12\left(n \log n+n \log \frac{12}{n}\right)$
19. Let p be an odd prime and let $q=p_{2}^{-1}$. Prove that :
$\left(\mathbf{O}^{2}+(-1) 0(\bmod p)\right.$.
20. Solve the congruence :

$$
25 x \equiv 15(\bmod 120)
$$

21. Let p be an odd prime. Prove that:

$$
\sum_{\substack{r \\(r)}}^{-} r \frac{\mathbf{p}_{\mathbf{p}}}{4} \text { if } p 1(\bmod .
$$

22. Find the inverse of the matrix $\left|\begin{array}{cc}15 & 17 \\ 4 & 9\end{array}\right| \bmod 26$
23. Find the discrete \log of 28 to the base 2 in F_{3}^{*}, using the Silver-Pohlig-Hellman algorithm. (2 is a generator of \mathbf{F}_{37}^{*}).
24. Briefly describe a method to construct the Knapsack cryptosystem.

$$
\text { (7 } \times 2=14 \text { weightage })
$$

> Part C
> Answer any two questions.
> Each question carries 4 weightage.
25. Prove that the set of all arithmetical functions f with $f(1) \neq \mathbf{0}$ forms an Abelian group under Dirichlet multiplication.
26. Let $\{a(n)\}$ be a non-negative sequence such that:

$$
\sum_{n x} \mathrm{a}(n)\left[\begin{array}{c}
x_{1} \\
- \\
l
\end{array}\right]=\mathrm{x} \log \mathrm{x}+0(\mathrm{x}) \text { for all } x
$$

Prove that there is a constant $B>0$ such that :
$\sum_{n \leq x} \mathrm{a}(\mathrm{n}) \leq \mathrm{B}(x)$ for all $\mathrm{x} \geq 1$.
27. Prove that the set of lattice points visible from the origin contains arbitrarily large square gaps.
28. Explain the advantages and disadvantages of public key cryptosystem as compared to classical cryptosystems.

