D 91597

(Pages : 3)

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 14—LINEAR PROGRAMMING AND ITS APPLICATIONS

Time : Three Hours

Maximum : 36 Weightage

Part A (Short. Answer Type)

Answer **all** the questions. Each question carries a weightage of 1.

- 1. Define convex set. Give an example for a convex set.
- 2. Prove that intersection of two convex sets is a convex set.
- 3. Prove that a Hyperplane is a convex set.
- 4. Is the function $f(x) = x^2$, $x \in \mathbb{R}$, a convex function. Justifiy your answer.
- 5. Distinguish between local and global extrema.
- 6. Define Lagrangian function and Lagrange multipliers.
- 7. Write the dual of the problem :

Minimize $z = x_1 + 3x_2$ subject to $x_1 + x_2 \ge 3$, $-x_1 + x_2 \le 2$, $x_1 2x_2 2$, $x_1 0$, $x_2 0$.

- 8. What is meant by loops in a transportation array?
- 9. What is meant by unbalanced transportation problem?
- 10. Describe the **0--1** variable problems in integer programming.
- 11. Define artificial variables. Describe the uses of artificial variables in solving linear programming problems.
- 12. Describe the concept of primal and dual problems in optimization theory.
- 13. Describe matrix games.
- 14. Describe the notion of dominance in game theory.

 $(14 \times 1 = 14 \text{ weightage})$

Turn over

Part B (Paragraph Type)

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. If $\mathbf{S}_{\mathbf{F}}$ denote the set of feasible solutions of a general linear programming problem, then prove that a vertex of SF is a basic feasible solution.
- 16. Use the method of Lagrange multipliers to find the maxima and minima of $x_2^2 (x_1 + 1)^2$ subject to $x_1 + x_2^2 = 1$.
- 17. Find the relative maxima and minima and saddle points if any of: $f(x) = xi + x^2 3x_1 12x_2 + 25$.
- 18. Define the dual of a linear programming problem. Prove that if the primal problem is feasible, then it has an unbounded optimum if and only if the dual has no feasible solution, and vice versa.
- 19. Find the point in the plane $x_1 + 2x_2 + 3x_3 = 1$ in \mathbf{E}_3 which is nearest to the point (-1, 0, 1).
- 20. Discuss degeneracy in transportation problems.
- 21. Prove that the transportation problem has a triangular basis.
- 22. Describe the rectangular game as a Linear programming problem.
- 23. Write the general form of an integer linear programming problem.
- 24. Explain the terms mixed strategy, pure strategy and optimal strategies with reference to any matrix game.

 $(7 \ge 2 = 14 \text{ weightage})$

Part C (Essay Type)

Answer any **two** questions. Each question carries a weightage of 4.

25. Use simplex method to solve the problem :

Maximize $f(X) = 5x_1 + 3x_2 + x_3$ subject to the constraints

 $2x_1 + x_2 + x_3 = 3, - + 2x_3 = 4, x_1 \ge 0, x_2 O$

26. Solve the transportation problem for minimum cost starting with the degenerate solution $\mathbf{x12} = 30, \mathbf{x21} = 40, \mathbf{x32} = 20, \mathbf{x43} = 60.$

	D_1	\mathbf{D}_2	\mathbf{D}_3	
01	4	5	2	30
O ₂	4	1	3	40
O ₃	3	6	2	20
04	2	3	7	60
	40	50	60	

27. Solve the following integer linear programming problem :

Maximize ϕ (X) = 3x₁ +4x₂; subject to 2x₁ + 4x₂ 13,

 $-2x_1 + x_2 2$, $2x_1 + 2x_2 1$, $6x_1 - 4x_2 15$, x_1 , $x_2 0$, x_1 and x_2 are integers.

28. Solve the game where the pay-off matrix is $\begin{vmatrix} 2 \\ 3 \\ 5 \\ 0 \end{vmatrix}$.

 $(2 \times 4 = 8 \text{ weightage})$