\qquad
\qquad

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics
 MT 3C 11-COMPLEX ANALYSIS

Time : Three Hours

Maximum : 36 Weightage

Part A
Answer all questions.
Each question carries 1 weightage.

1. Show that if a linear transformation has ∞ for its only fixed point, then it is a translation.
2. State the symmetry principle.
3. Compute the cross ratio :

$$
(i, 0,-1, \mathrm{co}) .
$$

4. Find the image of the hyperbola $\left\{z=x+i y: x^{2}-y^{2}=1\right\}$ under the $\operatorname{map} f(z)=z^{2}$.
5. State the Cauchy's Integral Formula.
6. Compute $d z$, where $r(t)=e, 0<t<2 \pi$
7. What is the nature of the singularity of e^{z} at $z=\infty$?
8. State general form of Cauchy's theorem.
9. Find the nature of the singularity of the function $\underset{\sin ^{2}{ }_{\tau}}{\operatorname{atc}} \approx=0$.
10. Let u be a real valued piecewise continuous function on $[0,2 \pi]$. Define the Poisson integral of u.
11. Find the roots of the equation :

$$
z^{\wedge}-6 z+3=0
$$

in the annulus $\{z: 1<$
12. Obtain the power series expansion of $\frac{1}{-}$ about $z=1$ in the disk $\left.z-1 \mathrm{I}<1\right\}$.
13. Prove that the sum of the residues of an elliptic function is zero.
14. Show that there does not exist an elliptic function with a single simple pole.
(14×1=14 weightage)

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Prove that a linear transformation carries circles into circle.
16. Describe the mapping properties of $\mathrm{W}=e^{z}$.
17. State and prove Schwarz's lemma.
18. Let r. be a closed rectifiable curve. For any point 'a' not on r define $\mathrm{n}(r, a)$. Show that $\mathrm{n}(r, a)$ is always an integer.
19. Show that if $f(z)$ is analytic in a region Ω and statistics the inequality If $(z)-1 \mid<1$ on Ω, then :
$\underset{-f(z)}{f(z)} d z=0$, for every closed curve r in Ω.
20. Obtain the Laurent series expansion of $\frac{1}{z(z-1)}$ in :
(i) $0<|z|<1$.
(ii) I $z \mid>1$.
21. State and prove the Residue theorem.
22. If $f(z)$ is analytic in a region Ω and has no zeros in Ω, prove that $\log f(z) I$ is harmonic in c.
23. Suppose f has an isolated singularity at $z=a$. If $\lim _{z \rightarrow a}(z-a) \quad(z)=0$, show that $z=a$ is a removable singularity.
24. Show that any even elliptic functions with periods w_{1} and w_{2} can be expressed in the form :

$$
\mathrm{C} \frac{-p(z)=\frac{p\left(a_{k}\right)}{k=1} p(z)-p\left(b_{k}\right)}{\text { 解 }}
$$

where C is a constant.

Answer any two questions.
Each question carries 4 weightage.
25. State and prove Cauchy's theorem for a rectangle.
26. Using Residue theorem, evaluate the integral $\int_{0}^{-} a+\cos \theta$ where $a>1$.
27. Derive the formula for the Weierstrass elliptic function in the form :

$$
p(z)={\frac{1}{z}+\sum_{w \neq 0}^{\prime} \frac{1}{(z-w)}=-=. ~}_{=}
$$

28. Derive the Poisson integral formula for harmonic functions.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

