D 52710

(Pages : 3)

Name...

Reg. No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, JANUARY 2014

(Non-CUCSS)

Mathematics

Paper XII-FUNCTIONAL ANALYSIS-I

Time : Three Hours

Maximum : 80 Marks

Part A

Answer all questions. Each question carries 4 marks.

I. (a) Show that the metric space L' = b is not separable.

(b) Let X be a normed space C_{y0} with I I₁. Show that the linear functional f on X defined by

 $f(x) = \frac{x(J)}{J=1}$ for x c X is continuous and determine VII •

- (c) Let (x_n) be a sequence in a Hilbert space H. Show that if n=1 then n=1 r then n=1
- (d) Let X denote the sequence space 1². Let I || be a complete norm on X such that if ||x_n x|| → 0, then x_n (J) x (J) for every J = 1, 2, ... Then show that || || is equivalent to the usual norm || ||₂ on X.

(4 x 4 = 16 marks)

Part B

Answer any four questions without omitting any unit. Each question carries 16 marks.

Unit I

- II. (a) Show that for 1 $p < \infty$, the metric space l^p is separable.
 - (b) Let X be a compact metric space. Show that X is complete and totally bounded.
 - (c) Show that the set of all polynomials in one variable is dense in C ([a, b]) with the sup metric.

Turn over

III. (a) Show that for $15 p \le \infty$, the metric space If (E) is complete for any closed interval E [a, b].

(b) Let
$$x = \pi$$
]. For $n = 0, \pm \pm 2, \dots$, let $\hat{x}(n) = \frac{1}{-1} \int_{-1}^{\infty} dm(t) \cdot \text{Show that the series}$

$$n = \frac{\underline{X}(n) - e(-n)}{converges in R}$$

IV. (a) Let Y be a closed subspace of a normed space X. For x y in the quotient space $\begin{pmatrix} & / \\ & Y \end{pmatrix}$, let

$$+ \mathbf{Y} = \{x + y \ 1: yc \ \mathbf{Y}\}.$$

Show that is a norm on $\overset{X}{\nearrow}_{y}$.

- (b) Let X be a normed space. Show that if E_1 is open in X and E2 c X, then $E_1 + E2$ is open in X.
- (c) Show that the closed unit ball in 1^2 is convex, closed and bounded, but not compact.

Unit II

- V. (a) Let X and Y be normed spaces and F $X \rightarrow y$ be a linear map. Show that F is continuous at 0 iff F is continuous on X.
 - (b) Give an example of a discontinuous linear map on a normed space.
- VI. (a) Let Y be a subspace of a normed space X over K. Show that if a c X but a 4 \overline{Y} , then there is some f s X' such that f = -0, $f^{(-)} = \text{dist}(a, Y)$ and = 1.
 - (b) Let X be a normed space. Show that for every Y of X and every g s Y', there is a unique Hahn-Banach extension of g to X iff X' is strictly convex.
- VII. (a) Let X be an inner product space. Show that for $x, y \in X$;

$$|\langle x, y \rangle|^2 \langle x, x \rangle \langle y, y \rangle,$$

where equality holds iff the set $\{x, y\}$ is linearly dependent.

- (b) State and prove Bessel's inequality.
- (c) Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{\alpha}\}$ is an orthonormal basis for H iff span $\{u_{\alpha}\}$ is dense in H.

Unit III

- VIII. (a) Let X be a normed space and Y be a closed subspace of X. Show that X is a Banach space iff Y and $\frac{X}{Y}$ are Banach spaces in the induced norm and the quotient norm respectively.
 - (b) Let X be a normed space and Y be a Banach space. Let X_0 be a dense subspace of X and $F_0 c BL(X_0, Y)$. Show that there is a unique F c BL(X, Y) such that $F_{X_0 = F_0 \text{ and } 11F11=11F01!}^F$
 - IX. (a) Let $X = \{x \in Ca-7c, \pi\}$ is $x(\pi) = x(-\pi)$ with the sup norm. Show that the Fourier series of every x in a dense subset of X diverges at 0.
 - (b) State and prove the bounded inverse theorem.
 - X. (a) Let X be a normed space and $f: X \to K$ be linear. Show that f is closed iff f is continuous.
 - (b) Let X and Y be Banach spaces and F : X f y be a linear map which is closed and surjective. Show that F is continuous and open.
 - (c) Show that the result in part (b) may not hold for normed spaces.

(4 x 16 = 64 marks)