D 91595

(Pages : 3)

Name

Reg. No.

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 12—FUNCTIONAL ANALYSIS—I

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer **all** questions. Each question carries 1 weightage.

- 1. Prove or disprove : A sequence in a metric space is bounded in X iff it is Cauchy.
- 2. Show that the metric space \mathcal{V} is complete.
- 3. Define n^{th} Dirichlet Kernel D_{μ} and evaluate $\int D_{\mu}(t) dt$.
- 4. State Riesz's lemma.

11

- 5. Let Y be a subspace of a normed space X. Show that $Y^0 \neq \phi$ iff Y = X.
- 6. Illustrate with an example that a linear map on a linear space X may be continuous with respect to some norm on X, but discontinuous with respect to another norm on X.
- 7. Let X be an inner product space and x E X. Show that (x, y) = 0 for all y E X iff x = 0.
- 8. Show that if E and F are closed subsets of a Hilbert space H and $E \perp F$, then E + F is close(H.
- Let X be an inner product space. Show that if E c X is convex, then there exists at most one approximation from E to any x E X.
- 10. Let X be a normed space over K. Let $\{a_1, a_2, ..., a_n\}$ be a linearly independent set in X. She there are f_1, f_2, f_m in x' such that $f_j(a_i) = \delta_{ij}, 1 j m$.

- 11. With usual notations, show that $C_c(T)$ is not closed in $C_o(T)$.
- 12. Define Schauder basis for a normed space X and show that if there is a Schauder basis for a normed space X, then X must be separable.
- 13. Show that the linear space C_{00} cannot be a Banach space in any norm.
- 14. State Uniform boundedness principle and interpret it geometrically.

(14 x 1 = 14 weightage)

Part B

Answer **any seven** questions. Each question carries 2 weightage.

- 15. Show that the set of all polynomials in one variable is dense in c([a, b]) with the sup metric.
- 16. Show that the metric space $LP([a, bp \text{ is separable for } 1 \quad p < co, \text{ but the metric space LO}([a, b]) \text{ is not separable.}$
- 17. Show that for all $x \in K''$;

and

$$\|x\|_1 \quad \sqrt{n} \|x\|_2 < n \|x\|_{\infty}.$$

18. Let X = K³ for x = (x(1), x(2), x(3)) e X, let $||x|| = (Ix(1)|^{-} + |x(2)|^{-})^{3/2} + |x(3)^{3/3/3}$. Show that II II

is a norm on K³.

19. Let X and Y be normed spaces and Z be a closed subspace of X. Show that if $F_{EBL}(X/Z, Y)$ and

we let F(x) = (x + z) for $x \in X$, then $F \in BL(X, Y)$ and 110 = |F|

1. Show that if a non-zero Hilbert space **H** over **K** has a countable orthonormal basis then **H** is linearly isometric to K^n for some n, or to 1^2 .

Let E be a non-empty closed convex sub-set of a Hilbert space H. Show for each $x \in H$, there exists a unique best approximation from E to x.

22. Let $X = K^2$ with the norm II IL • Consider $Y = \{(x(1), x(2) \in X) : x(1) = x(2)\}$, and define $g \in \mathbb{R}$

by g(x(1), x(2)) = x(1).

Show that the Hahn-Banach extensions of g to X are given by :

f(x(1), x(2)) = t x(1) + (1-t) x(2), where $t \in [0,1]$ is fixed.

- 23. Show that a normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X.
- 24. Show that a subset E of a normed space X is bounded in X iff f(E) is bounded in K for every $f \in X'$

(7 x 2 = 14 weightage)

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Show that every finite dimensional subspace of a normed space X is closed in X.
- 26. Let {u_u} be an orthonormal set in a Hilbert space H. Show that {u_u} is an orthonormal basis for H iff space {u_u} is dense in H.
- 27. State and prove Hahn-Banach separation theorem.
- 28. Let X be a normed space and Y be a closed subspace of X. Show that X is a Banach space iff Y and X

X are Banach spaces in the induced norm and the quotient norm, respectively.

(2 x 4 = 8 weightage)