Name.....

D 91596

(Pages : 3)

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015 (CUCSS)

Mathematics

MT 3C 13-TOPOLOGY-II

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer **all** questions. Each question has weightage 1.

- 1. Prove that, if a product is non-empty, then each projection is onto.
- 2. Let be the product topology on the set 11 X, where $\{(X_i, \tau_i): i \in I\}$ is an indexed collection of

topological spaces. Prove that the family of all subsets of the form (V,) for V, E t,, $i \in I$ is a subbase for τ .

- 3. Prove that a topological product is T_o if each coordinate space is T_o .
- 4. Let $X = \prod_{i \in I} X$ where each X is a topological space and let x E X. Suppose $\{x_{ij}\}$ is a sequence in

X with the property that for each *i* E I, the sequence $\{\pi_i x, \text{, converges to } \pi_i(x) \text{ in } X \}$. Prove that

 $\{x_n\}$ converges to x in X.

- 5. Prove that the evaluation function of a family of functions is one-to-one if and only if that family distinguishes points.
- 6. Give an example of a second countable Hausdorff space which is not metrizable.
- 7. Prove that in a simply connected space, any two points having the same initial and final points are path homotopic.
- 8. Show that if $p: E \to B$ is a covering map, then p is an open map.
- 9. Prove that the map $p: \rightarrow S'$ given by $p(z) = z^2$ is a covering map.
- 10. Prove that a continuous real-valued function on a countably compact space is bounded and attains its extrema.
- 11. Prove that a first countable countably compact space is sequentially compact.

Turn over

- 12. Let X be Hausdorff and locally compact at a point x in X. Prove that the family of compact neighbourhoods of x is a local base at x.
- 13. Let A be a subset of a metric space (X, d) such that A is complete with respect to the metric induced on it. Prove that A is closed in X.
- 14. Prove that the set of irrationals is of second category in the real line R with the usual topology.

(14 x 1 = 14 marks)

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Prove that any continuous real-valued function on a closed subset of a normal space can be extended continuously to the whole space.
- 16. Let $\{X : i \in I\}$ be an indexed family of sets and let $X = \prod_{i \in I} X_i$, Prove that a subset of X is a box if

and only if it is the intersection of a family of walls.

- 17. Let S be a subbase for a topological space X. Prove that X is completely regular if and only if for each V E S and for each x E V, there exists a continuous function f: X → [0, 1] such that f(x) = 0 and f(y) = l for all y V.
- 18. Let $\{f_i : X \to Y \mid i \in I\}$ be a family of functions which distinguishes points from closed sets in X.

Prove that the corresponding evaluation function $e: X \to 1Y$, is open when regarded as a function

from X onto e(X).

- 19. Prove that path homotopy ($\approx p$) is an equivalence relation on the set of paths in a topological space X.
- 20. Let $P: E \to B$ be a covering map and let $p(e_0) = b_0$. Prove that any path $f: [0, 1] \to B$ beginning at b_0 has a lifting to a path f in E beginning at e_0 .
- 21. Prove that a subset of Euclidean space is compact if and only if it is closed and bounded.
- 22. Among all Hausdorff compactifications of a Tychonoff space, prove that the stone-cech compactification is the largest compactification upto a topological equivalence.
- 23. Prove that every compact metric space is complete.
- 24. Prove that the function $e: \hat{X} \times \hat{X} \to \mathbb{R}$ defined by $e([\hat{x}], [\hat{y}]) = \lim d_{(\mathbf{x}, ..., n)}$

(where $\hat{x} = \{x\}$ and $\hat{y} = y_{,,}\}$) is a metric on X, where (X, d) is a metric space.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 4.

- 25. Prove that a product of spaces is connected if and only if each co-ordinate space is connected.
- 26. State and prove Urysohn's metrization theorem.
- 27. Prove that the fundamental group of the circle is infinite cyclic.
- 28. Prove that a topological space is compact if and only if there exists a closed sub-base *C* for X such that every family of *C* having the finite intersection property has a non-empty intersection.

 $(2 \times 4 = 8 \text{ weightage})$