D 31327

(**Pages : 3**)

Name

Reg. No.

Maximum : 36 Weightage

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(CUCSS)

Mathematics

MT 3C 13—TOPOLOGY—II

(2010 Admissions)

Time : Three Hours

Part A

Answer all questions. Each, question has weightage 1.

- 1. Prove that the intersection of any family of boxes is a box.
- 2. Prove that the projection functions are open.
- 3. Prove that if; is a T₂-Space far each $i \in I$, then $\frac{\pi}{i \in I} X_i$ is also a T₂-space in the product topology.
- 4. Explain countably productive topological property.
- **5.** Let $\{Y_i : i \in I\}$ be a family of sets, X a set and for each $i \in I$, Y; a function. Prove that the evaluation function is the only function from X into πY_i whose composition with the projection
 - π_i Y_i equals f_i for all $i \in I$.
- 6. State a necessary and sufficient condition for embedding a topological space in the Hilbert cube.
- 7. Define a simply connected space and give an example.
- 8. Show that if P : E B is a covering map, then p is an open map.
- 9. Let a covering map P : R S' be given by $p(x) \equiv (\cos 2\pi x, \sin 2n x)$. Find a lift of the path : [0,1] S' defined by $f(x) = (\cos \pi x, \sin ax)$.
- 10. Prove that a continuous real-valued function on a countably compact space is bounded and attains its extrema.
- 11. Let \mathcal{B} be a base for a topological space X such that every cover of X by members of β has a finite subcover. Prove that X is compact.

Turn over

- 12. Prove that every locally compact Hausdorff space is regular.
- 13. Give an example of a metric space which is complete but not compact.
- 14. Define Completion of a metric space (X, d).

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Let A be a closed subset of a normal space X and suppose $f: A \rightarrow (-1,1)$ is continuous. Prove that there exists a continuous function F: X (-1,1) such that F(x) = f(x) for all x c A.
- 16. Let $\{(x_i, \tau_i): i \in I\}$ be an indexed collection of topological spaces and let τ be the product topology on the set $\prod_{i \in I} i$ Prove that $\{(V_1): V_1 \in \tau_i, i \in I\}$ is a sub-base for T.
- 17. Let (X, d) be a metric space and let X. be any positive real number. Prove that there exists a metric e on X such that $e(x, y) = \lambda$ for all $x, y \in X$.
- 18. Prove that a topological space is a Tychonoff space iff it is embeddable into a cube.
- 19. Prove that path homotopy -p is an equivalence relation on the set of paths in a topological space X.
- 20. If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X with Y, prove that h_* is an isomorphism of $\overline{1}(X, x_0)$ with $\pi_1(Y, y_0)$.
- 21. Prove that sequential compactness is preserved under continuous functions.
- 22. Let X be a Tychonoff space, (e, (x)) its Stone-Cech compactification and suppose f:X→[0,1] is continuous. Prove that there exists a map g:f3 (X) → [0,11 such that goe = f.
- 23. Let A be a subset of a metric space (X, d) such that A is complete with respect to the metric induced on it. Prove that A is closed in X.
- 24. Prove that the range of the embedding $h:(\mathbf{X}, d)$ $(\hat{\mathbf{X}}, e)$ is a dense subset of $\hat{\mathbf{X}}$ in the metric topology induced by e.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question has weightage 4.

- 25. Prove that metrisability is a countably productive property.
- 26. Prove that a topological space is embeddable in the Hilbert cube iff it is second countable and T_3 .
- 27. Let $p: E \rightarrow B$ be a covering map and let $p(e_0) = b_{u}$. Let the map F:1 x I $\rightarrow B$ be continuous with

 $F(0, 0) = b_{u}$. Prove that there is a lifting of F to a continuous map such that

 $(0, 0) = e_{u}$.

28. State and prove Alexander sub-base theorem.

 $(2 \ge 4 = 8 \text{ weightage})$