(Pages: 2)

Name

Time : Three Hours

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(Non-CUCSS)

Mathematics

Paper XII-FUNCTIONAL ANALYSIS-I

(2002 Admissions)

Maximum: 80 Marks

Reg. No-

Part A

Answer all questions. Each question carries 4 marks.

- I. (a) Define Cauchy sequence and show that every Cauchy sequence is bounded. Is the converse true ? Justify your answer.
 - (b) Prove that among all the normed spaces L^P ([0,1]); 1≤ p ≤ ∘, only the space L² ([0,1]) is an inner product space.
 - (c) Show that the linear space C_{00} cannot be a Banach space in any norm.
 - (d) Let $\| \|'$ be a complete norm on $C([a, -such that if <math>||x_n x||' \to 0$, then $x_n(t) \to x(t)$ for every $t \le [a, b]$. Show that II If is equivalent to the sup norm on C([a, b]).

(4 x 4 = 16 marks)

Part ${f B}$

Answer any **four** questions without omitting any unit. Each question carries 16 marks.

UNIT I

- II. (a) Show that the intersection of a finite number of dense open subsets of a metric space X is dense in X.
 - (b) Let T be a compact metric space and E c C (T). Suppose that E is bounded and equicontinuous

at each t c T. Show that E is totally bounded in the sup metric on C (T).

- III. (a) Show that for $1 \le p \le 00$, the metric space LP (E) is complete for any measurable subset E of R.
 - (b) Let x be a continuous k-valued function on [—it, it] such that x (n) = x(-π). Show that the sequence of arithmetic means of the partial sums of the Fourier series of x converges to x uniformly on [-π, π].

- IV. (a) State and prove Riesz Lemma.
 - (b) Let X be a normed space. Show that X is finite dimensional if every closed and hour is subset of X is compact.

UNIT II

- V. (a) Show that every linear map on a finite dimensional normed space is continuous.
 - (b) Show that a linear functional f in a normed space X is continuous iff the zero space Z(f) is closed in X.
 - (c) Let X be a normed space and P ϵ BL (X) satisfy P2 = P. Show that ||P|| = 0 or PI(1.
- VI. (a) Let X be a normed space over k, Y be a subspace of X and g E Y' Show that there is some

 $f \in \mathbf{X}'$ such that $\mathbf{f}_{\mathcal{Y}} = g$ and $\|f\| = \|g\|$.

- (b) Show that there exists a linear functional f on \mathcal{V} such that $\|f\|^{-1} = f(a)$ and f(x) = f(x) for all $x \in r$ where a = ...) and T(x)(j) = x(j+1) for j = 1, 2,...
- VII. (a) Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{\alpha}\}$ is an orthonormal basis for H iff x ε H and (x, u) = 0 for all a, then x = 0.

(b) Let $H = L^2([0,1])$. Show that $\{1, \overline{2} \cos \pi t, \overline{2} \cos 2\pi t, ...\}$ is an orthonormal basis for H.

UNIT III

- VIII. (a) Show that a normed space Xis a Banach space iff every absolutely summable series of elements in X is summable in X.
 - (b) Show that every normed can be embedded as a dense subspace of a Banach space.
 - IX. (a) Let X be a normed space and E be a subset of X. Show that E is bounded in X if f(E) is bounded in h for every f E X'.
 - (b) Let $15_p Scc$ and $X = C_{00}$ with the norm $11 \parallel_{\nu}$ For $n = l, 2, ..., let f_n(x) = nx(n); x \in X$. Show that $f_n(x) \to 0$ for every x E X, but $\parallel f_n \parallel \to 00$.
 - X. (a) State and prove closed graph theorem.(b) Show that the closed graph theorem may not hold for normed spaces.

(4 x 16 = 64 marks)