(Pages : 2)

Name

(Non-CUCSS)

Mathematics

Paper XIII—TOPOLOGY—II

(2002 Admissions)

Time : Three Hours

Maximum: 80 Marks

Reg. No.

Part A

Answer **all** questions. Each question carries 4 marks.

- I. (a) Let A be a subset of the topological space X and let $f: A \to R$ be continuous. Prove that any two extensions of f to X agree on A.
 - (b) Prove that the intersection of any family of filters on a set is again a filter on that set.
 - (c) Prove that first countable, countably compact space is sequentially compact.
 - (d) Prove that a subspace of a locally compact space Hausdorff space is locally compact if and only if it is open in its closure.

(4 X 4 = 16 marks)

Part B

Answer any **four** questions without omitting any unit. Each question carries **16** marks.

Unit I

- II. (a) Let X be a topological space having the property that for each closed subset A of X, every continuous real valued function on A has a continuous extension to X. Prove that Xis normal.
 - (b) If a product space is non-empty, then prove that each co-ordinate space is embeddable in it.
- III. (a) Let $\{X_i : i \in I\}$ be an indexed family of sets and let $X = \prod_{i \in I} X_i$. Prove that a subset of a

topological space X is a box if and only if it is the intersection of a family of walls.

(b) Prove that a topological product is T_2 if and only if each co-ordinate space is T_2 .

IV. (a) Let *T* be the product topology on the set $\prod_{i} \nabla$ where $\{(X_i, T_i) : i \in I\}$ is an indexed collection of topological spaces. Prove that the family of all subsets of the form $\pi_i \cap (V_i)$ for $V_i \in T_i$, $i \in I$ is a subbase for *T*.

Turn over

D 31618

(b) Prove that a product of topological spaces is path connected if and only if each co-ordinate space is pathconnected.

Unit II

- V. (a) Prove that a topological space is a Tychnoff space if and only if it is embeddable into a cube.
 - (b) Prove that a space is embeddable in the Hilbert cube if and only if it is second countable and T_s .
- VI. (a) Let $S \longrightarrow X$ be a net in a topological space X and let x E X. Prove that x is a cluster point of S if and only if there exists a subnet of S which converges to x in X.
 - (b) Prove that a topological space is compact if and only if every family of closed subsets of it, which has the finite intersection property, has a non-empty intersection.
- VII. (a) Prove that a topological space is Hausdorff if and only if no filter can converge to more than one point in it.
 - (b) Prove that a topological space is compact if and only if every ultra filter in it is convergent.

Unit **III**

- VIII. (a) Prove that sequential compactness is a countably productive property.
 - (b) If a topological space X is Hausdorff and locally compact at point $x \in X$, then prove that the family of compact neighbourhoods of *x* is a local base at *x*.
 - IX. (a) Prove that a topological space X is compact if and only if there exists a closed sub-base C for X such that every subfamily of C having the finite intersection property has a non-empty intersection.
 - (b) Prove that every compact metric space is complete.
 - X. (a) Let A be a subset of a metric space (X; d). Prove that A is totally bounded with respect to d if and only if for every $\in > 0$, A can be a covered by finitely many open balls with centres in A and of radii less than E each.
 - (b) Prove that every metric space can be isometrically embedded as a dense subspace of a complete metric space.

(4 x 16 = 64 marks)