D 31619

(Pages : 3)

Name

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2012

(Non-CUCSS)

Mathematics

Paper XIV-DIFFERENTIAL GEOMETRY

(2002 admissions)

Time : Three Hours

Maximum: 80 Marks

Part A

Answer **all** questions. Each question carries 4 marks.

1 (a) Show that the graph of any function $f \longrightarrow \mathbb{R}$ is a level set for some function $f : \mathbb{R}^{n+1}$

- (b) Find the integral curve through the point (1, 1) of the vector field X on ℝ² with associated function X ℝ given by X(x₁, x₂) = (x₂, x₁).
- (c) Show that covariant differentiation of vector fields has the following property

 $(X \cdot Y) = (DA) + X(p)$. The set of the set

(d) Let S be on oriented 2-surface \mathbb{R}^3 and let E S Show that fur each

v, to $\mathbb{E} S_{\mu} L_{\nu}(v) \times L_{\nu}(w) = K(p) \vee x w$

(4 x 4 = 16 marks)

Part B

Answer any **four** questions without omitting any unit. Each question carries 16 marks.

Unit I

- 2. (a) Let X he a smooth vector field on an open set U \mathbb{R}^{-1} and let $p \in U$. Prove the existence and uniqueness of the maximal integral curve of X through p.
 - (b) A smooth vector field X on an open set U of \mathbb{R}^{-1} is said to be complete if for each $p \in U$, the maximal integral curve of X through p has domain equal to \mathbb{R} . Determine which of the following vector fields are complete :
 - (i) X $(\mathbf{x}_1, \mathbf{x}_2) = (x_1, x_2, 1, 0), \mathbf{U} = \mathbf{R}^2$.
 - (ii) X $(x_i, x_2) = (x_i, x_2, 1 + 0), = 1\mathbb{R}^2$.

Turn over

- 3. (a) Let $p \in U$ be an open set in \mathbb{R}^{n+} and $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f with $f(\mathbf{n}) = c$. Prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\frac{1}{2}}$
 - (b) Show that the set S of all unit vectors at all points of \mathbb{R}^2 forms a 3-surface in \mathbb{R}^4 .
- 4. Let S be a compact oriented n-surface in S^n . Prove that the Gauss map, maps S onto the unit sphere S^n .

Unit II

- 5. (a) Let S be an n-surface in \mathbb{R}^{n+} , let a S be a parametrized curve in 5, let to E 1, and let $V \to S_{\alpha(t_o)}$ Then prove that there exists a unique vector field V, tangent S along *a*, which is parallel and has V (t_o) = *v*.
- (b) Show that if a S is a geodesic in an n-surface and *if* $f3 = \alpha oh$ is a reparametrization of a (with $h \rightarrow I$), then β is a geodesic in S if and only if there exist $a, b \in \mathbb{R}$ such that h(t) = at + b for all t
- 6. (a) Let S be an oriented n-surface in \mathbb{R}^{n+} and $p \in S, v \in S_p$. Define the Weingarten map L_p of $\begin{array}{c} S \text{ at } p \\ S \text{ at } p \end{array}$. Choosing your own orientation, compute the Weingarten map for the circular cylinder $\begin{array}{c} x22 \\ +x3 \end{array} = 1.$
 - (b) Let a(+) = (x(+), y(+)) (*t* E I) be a local parametrization of the oriented plane curve Show that $K \circ \alpha = (x'y'' y'x'') / (x'^2 + y'^2)^{\frac{3}{2}}$.
- 7. Let C be a oriented plane curve: Prove that C has a global parametrization.

Unit III

- 8. (a) Let S be an oriented n-surface in R¹⁺ and let V be a unit vector in S_p p E . Then prove : there exists an open set V c R⁺ containing p such that S n N(v) n V is a plane curve. Further, the curvature at p of this curve (suitably oriented) equals the normal curvature k(v).
 - (b) Find he Gaussian curvature K S \rightarrow R where S is the cone xi $+^{x22} x_3^2$ O₅ > 0.
- 9. (a) Let S be an n-surface in ℝⁿ⁺ and let p E S. Then prove that there exists an open set V about p in ℝⁿ⁺ and a parametrized n-surface ∞: U → ℝⁿ⁺¹ such that φ is a one-to-one map from U onto V ∩ S
 - (b) Show that the Weingarten map at each point of a parametrized n-surface is self-adjoint.

- 10. (a) Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^{\mathbb{R}}$ be such that $f \circ \varphi$ is smooth for each local parametrization $\varphi: \to S$ Prove that f is smooth.
 - (b) Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+} whose Gauss-Kronecker curvature is nowhere zero. Then prove that the Gauss map N S^n is a diffeomorphism.

 $(4 \ge 16 = 64 \text{ marks})$