D 51669

(Pages : 3)

Name

Reg. No.

Maximum: 36 Weightage

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2013

(CUCSS)

Mathematics

MT 3C 11-COMPLEX ANALYSIS

Time : Three Hours

Part A

Answer **all** questions. Each question carries 1 **weightage**.

- 1. Find the fixed points of the linear transformation $w = \frac{2z}{3z-1}$
- 2. Find the points at which the function $\tan z$ is not analytic.
- 3. State the symmetry principle.
- 4. If z = x + iy, prove that $e^z = ex$.
- 5. Compute $\int ydz$ where r is the directed line segment from 0 to *i*.
- 6. Let n be a positive integer. Prove that $\int (z-a)^n dz = 0$ for any closed curve r.
- 7. Let the curve *r* lie inside of a circle. Prove that the index n(r, a) = 0 for all points a outside of the same circle.
- 8. Determine the nature of the singularity of the function $\frac{\sin z}{\tan z} = 0$. Justify your answer.
- 9. Find the residue of the function $f(z) = \frac{z^2 2}{(z-2)^2}$ at z = 2.
- 10. Define : Simply connected region. Give an example of a simply connected region.
- 11. Prove : the argument 0 is harmonic wherever it can be defined.

Turn over

12. Find a harmonic conjugate of the function *ex* cos y.

13. Find the Taylor series expansion of the function $\begin{bmatrix} 1 \\ z \end{bmatrix}_{2} at z = l$.

14. Prove that an elliptic function without poles in constant.

(14 x 1 = 14 weightage)

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Let Q be the region C {z: z e., the complement of the negative real axis. Define a continuous function $f:S2 \rightarrow C$ satisfying $f(z) = z^2$ for all $z \in \Omega$ and f(1) = 1. Show that f is analytic in Q.
- 16. Define : Linear fractional transformation prove that a linear fractional transformation is a topological mapping of the extended complex plane into circles.
- 17. Prove that the cross-ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or a straight line.
- 18. Let f be a continuous complex valued function defined on the closed interval [a, b]. Prove that

$$\begin{array}{c|c} f(t) \, dt \\ a \end{array} \qquad \begin{array}{c} f(01 \, dt. \\ a \end{array}$$

- 19. State and prove Morera's theorem.
- 20. Prove that an analytic function comes arbitrarily close to any complex value in every neighbourhood of an essential singularity.
- 21. How many roots does the equation $z^7 2z^5 + 7z^3 z + l = 0$ have in the disc Iz | < 1.
- 22. State and prove Hurwitz's theorem.
- 23. Find the Laurent series expansion of the function $I(z) = \frac{1}{(z-1)(z-2)}$ in the regions $0 < |z|^{-1} |<1$ and $1 < |z-2| < \infty$.
- 24. Derive Legendre's relation $_{:X11}$ w² = $2\pi i$.

(7 x 2 = 14 weightage)

Part C

Answer any two questions. Each question carries 4 weightage.

25. Let the function f(z) be analytic on the rectangle R defined by the inequalities

Then prove that
$$\frac{f(z)}{\partial \mathbf{R}} dz = 0.$$

- 26. Let the function f be analytic in a region Q and let a $_{ES2}$. Suppose that f(a) and all its derivatives $f^{n}(a)$ vanish. Prove that f is identically zero in Ω .
- 27. Discuss the evaluation of integrals of the type $j R(x) e^{ix} dx$ using the theory of residues.
- 28. Prove that the Weirestrass eliptic function satisfies the differential equation of the form

(z))² = 4 (
$$\mathcal{P}$$
 (z) ³ - g₂ 0 (\mathfrak{Z}) - g₃.

 $(2 \times 4 = 8 \text{ weightage})$