D 51670

Name.....

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2013 (CUCSS)

Mathematics

MT 3C 12—FUNCTIONAL ANALYSIS—I

Time : Three Hours

Maximum : 36 Weightage

Part A

Answer all the questions. Each question carries weightage 1.

- I. Show that every Cauchy sequence in a metric space is bounded. Is the converse true ? Justify your answer.
- 2. Show that $\int_{-\infty}^{\pi} |D_{n}(t)| dt \to 00$ as n 00 where D_{n} denotes the nth Dirichlet Kernel.
- 3. Prove that the norm function on a linear space is uniformly continuous.
- 4. "Let X be a normed space. Show that if E_1 is open in X and $E_2 \subset X$, then $E_1 + E_2$ is open in X.
- 5. State Riasz Lemma.
- 6. Give an example of a discontinuous linear map from a normed space into a normed space.
- 7. Let X be a normed space and P E BL (X) satisfy $p^2 = p$. Show that II P II = 0 or II P II **1**.
- 8. Show that among all the l^p spaces, 1 p 00, only 1^2 is an innerproduct space.
- 9. Let X be an innerproduct space. Show that for x, y $\in X$, $\|x + y_{f}\| = 11x412 11y112$ iff Re(x, y) = 0.
- 10. Let F be a subspace of an inner product space X and x E X. Let y E F be such that x y 1 F. Show that y is a best approximation from F to x.
- 11. Let X be a normed space over K and $a \neq 0 \in X$. Show that there is some $f \in X'$ such that f(a) = ||a|| and 1.
- 12. Show that the linear space c_{uu} cannot be a Banach space in any norm.
- 13. Is it true that every finite dimensional normed space is separable ? Justify your answer.
- 14. State uniform boundedness

(14 x 1 = 14 weightage) Turn over

Part B

Answer any seven questions. Each question carries weigh tage 2.

- 15. Show that the set of all polynomials in one variable is dense in C --b with the sup metric.
- 16. Show that $L^{\infty}([a, b])$ is not separable.
- 17. Let x c L' ($[-\pi, \pi]$). Show that $\hat{x}(n) \to 0$ as $n \to \pm 00$, where 1(n) denotes the nth Fourier coefficient of x.
- 18. Show that the three norms II \parallel_1 II \parallel_2 and II \parallel_2 on K are equivalent.
- 19. Let X and Y be normed spaces and Z be a closed subspace of X. Show that if $F \in BL(X/Z, Y)$ and if we let $F(x) = \tilde{F}(x + Z)$ for $x \in X$, then $F \in BL(X, Y)$ and $||F|| = ||\tilde{F}||$.
- 20. Let X and Y be inner product spaces. Show that a linear map $F: X \to Y$ satisfies $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for all $x, y \in X$ iff it satisfies ||F(41 ||x||) for all $x \in X$, where the norms on X and Y are induced by the respective inner products.
- 21. Let E be a non-empty closed convex subset of a Hilbert space H. Show that for each x E H, there exists a unique best approximation from E to x.
- 22. Let X be a normed space over K, Y be a subspace of X and $g \in Y$. Show that there is some $f \in X'$ such that f/Y = g and ||f|| = ||g||.
- 23. Show that a normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X. -
- 24. Let X and Y be Banach spaces and $F_n \to BL(X, Y)$, n = 1, 2, ... Show that there is some $F \in BL(X, Y)$ such that $F_n(x) \to F(x)$ for every $x \in X$ iff $(F_n(x))$ converges for every x in some set E whose span is dense in X and the set $\{||F_n|| : n = 1, 2, ...\}$ is bounded.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries weightage 4.

- 25. Show that for 1 p < a, the metric space JP is complete.
- 26. Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{\alpha}\}$ is an orthonormal basis for H iff x E H and $(x, u_{\alpha}) = 0$ for all a, then x = 0.
- 27. Let X be a normed space over K, E be a non-empty open convex subset of X and Y be a subspace of X such that $E \cap Y = \phi$. Show that there is a closed hyperspace Z in X such that Y c Z and $E \cap Z = 4$.
- 28. Let X be a normed space and Y be a closed subspace of X. Show that X is a Banach space iff Y and X/Y are Banach spaces in the induced norm and the quotient norm, respectively.

 $(2 \times 4 = 8 \text{ weightage})$