FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics
 MT 4C 16-DIFFERENTIAL GEOMETRY

Time : Three Hours
Maximum : 36 Weightage
Standard notation as in the prescribed text is followed.
Part A
Answer all questions. Each question carries weightage 1.

1. Sketch the level sets $f^{-1}(c)$ at the heights indicated

$$
\left.f \quad x_{2}, x_{3}\right)=2 \underset{-\boldsymbol{x}_{2}}{\gtrless}-\underset{\boldsymbol{x}_{3}}{\gtrless} ; c=\mathbf{- 1 , 0}
$$

2. Find and sketch the gradient field of the function $I\left(x i, x_{2}\right)=\left(x_{1}^{2}-x_{2}^{2}\right) / 4$
3. Show by example that the set of vectors tangent at a point p of a level set might be all of \mathbb{K}_{p}^{n+1}
4. Show that the set S of all unit vectors at all points of $\mathbf{R 2}$ forms a 3-surface in \mathbf{R}^{4}
5. Show that if S is a connected n-surface in \mathbb{R}^{+1} and $g: S-3 \mathbb{R}$ is continuous and takes on on finitely many values, then g is constant.
6. Describe the spherical image of the paraboloid $-x_{1}+x^{2}+x_{3}^{2}=0$ (Choose your orientation).
7. Show that if $\alpha: I \quad \mathbb{R}^{n}+{ }^{1}$ is a parametrized curve with constant speed, then a $(t) \perp \mathbf{a}(t)$ for all t
8. Let S be an n-surface in \mathbb{R}^{+1}, let $a: I \rightarrow S$ be a parametrized curve. Let X be a vector tangent to \mathbf{S} along a^{\prime}. Verify that

$$
(f X)^{\prime}=f \mathbf{X}+f \mathbf{X}^{\prime}
$$

for all smooth functions f along a.
9. Compute $\mathrm{V} f$ where $I: \mathrm{R}^{2} \rightarrow \mathrm{IR}$ and $\mathrm{veR}{ }_{p}, p \mathrm{E} \mathbb{R}$.

$$
\left.f \quad x_{2}\right)=x_{1}-x_{2}^{2}, v=(1,1, \cos 0, \sin 0) .
$$

10. Let C be an oriented plane curve and $p \in \mathrm{C}$ with $k(p) \neq 0$. Define the circle of curvature at p.
11. Find the length of the given parametrized curve $d:[0,2 \pi] \rightarrow \mathrm{R}^{3}$, where $\mathrm{a}(\mathrm{t})=(\mathrm{\imath} \quad \cos 2 \mathrm{t}, \sin 2 \mathrm{t}, \sin 2 \mathrm{t})$.
12. Let S be an oriented 2-surface in R3 and let $p E S$. Show that for each $\mathrm{v}, \mathrm{w} E \mathrm{~S}_{\mathrm{p}}$

$$
L_{\mu}(\vartheta) \times L_{p}(\mathrm{co})=k(p) \quad \times \omega .
$$

1.3. Let $\mathrm{Q}: \mathrm{U}_{1} \mathrm{U}_{2}$ and $\psi: \mathrm{U}_{2} \rightarrow \mathbb{R}$ be smooth. Verify the chain rule $d(\psi o \phi)=d \psi \operatorname{od} \psi$.
4. Show that if $\mathrm{S}=\mathrm{f}^{-1}(\mathrm{c})$ is an n -surface in $\mathrm{R}^{\mathrm{n}}{ }^{\kappa}$ and $p \mathrm{ES}$, then the tangent space; to S at p is equal to the kernal of $d f_{p}$.
($14 \times 1=14$ weightage)

Part B

Answer any seven questions. Each question carries weightage 2.
Find the integral curve through $p(0,1)$ of the vector field X on R^{2} given by $\mathrm{X}(p)=(p, X(p))$ where $\mathrm{X}\left(\mathrm{x}_{\mathrm{i}}, x_{\mathrm{Z}}\right)=\left(-2 \mathrm{x}_{1}, \quad x_{2}\right)$.

10w that the maximum and minimum values of the function $\mathrm{g}\left(\mathrm{x} 1, \ldots . ., x_{n+1}\right)=\sum_{j=1}^{\mathrm{n}+1}$ a.. x. x.
the unit n-sphere $\sum_{i=1}^{\mathrm{n}+1} \mathrm{xi}^{2}={ }^{1}$ where $\left(a_{i j}\right)$ is a symmetric nx n matrix of real numbers, are the nvalues of the matrix (a).
17. Let S be an n -surface in \mathbb{R}^{n+1}, let X be a smooth tangent vector field on S and let $p \mathrm{E} \mathrm{S}$ Then prove the existence of the maximal integral curve of X through p.
18. Show that if the spherical image of a connected n-surface is a single point, then S is contained in an n-plane.
19. For 0 E IR, let $\alpha_{\theta}:[0, \mathrm{it}] S^{2}$ be the parametrized curve in the unit sphere S^{2} from the north pole $p=(0,0,1)$ to the south pole $q=(0,0,-1)$, defined by $\alpha_{\theta}(t)=(\cos 0 \sin t, \sin 0, \sin t, \cos t)$. Let $\mathrm{v}=(p, 1,0,0) \mathrm{E} \mathrm{S}_{\mathrm{p}}$. Then compute $\mathrm{P}_{\mathrm{u}_{0}}(\mathrm{v})$.
20. Let S be an n -surface in $\mathrm{p}+^{1}$, oriented by the unit normal vector field N . Let $p E S$ and $V E \mathrm{~S}_{\mathrm{p}}$ Let a:IS be a parametrized curve with a $O=v$ for some $t_{0} E$. Then prove that

$$
(t) . \mathrm{N}(p)=\mathrm{L}_{\mu}(\mathrm{v}) \cdot \mathrm{v}
$$

21. Let $g: I \rightarrow$ III be a smooth function and let C denote the graph of g. Show that the curvature of C at the point $(t, g(t))$ is $g^{\prime \prime}(t) 1\left(1+g^{\prime}{ }_{(t)} 2\right)^{3 / 2}$ for an appropriate choice of orientation.

22. Show that the Weingarten map at each point of a parametrized n-surface in \mathbb{K}^{n+1} is self-adjoint.
23. State and prove inverse function theorem for n-surfaces.

Part C

Answer any two questions.
Each question carries weightage 4.
25. Let S be a compact, connected oriented n -surface in $\mathbb{R}^{n+{ }^{1}}$ Prove that the Gauss map maps S o the unit n-sphere S^{n}.

Turn

26. Let C be a connected, oriented plane curve and let $0: \mathrm{IC}$ be a unit speed global parametrization C. Then prove that β is either one-to-one or periodic. Further show that 0 is periodic iff C is compact.
27. Let S be a compact oriented n -surface in $\mathbb{R}^{+`}$. Prove : There exists a point $p \mathrm{ES}$ such that the second fundamental form at p is definite.
28. Let \mathbf{S} be an n-surface in \mathbb{R}^{n+1} and let $f \mathbf{S} \rightarrow \mathbb{R}$. Suppose that f o g is smooth for each level parametrization, $\varphi: \mathrm{U} \rightarrow \mathrm{S}$. Then prove that f is smooth.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

