C 3545

(**Pages : 4**)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours

Maximum : 36 Weightage

Standard notation as in the prescribed text is followed.

Part A

Answer all questions. Each question carries weightage 1.

1. Sketch the level sets $f^{-1}(c)$ at the heights indicated

$$f \qquad x_2, x_3) = {}^2 - \frac{2}{x_2} - \frac{2}{x_3}; c = -1, 0.$$

- 2. Find and sketch the gradient field of the function $I(xi, x_2) = (x_1^2 x_2^2) / 4$
- 3. Show by example that the set of vectors tangent at a point p of a level set might be all of \mathbb{K}_{L}^{n+1}
- 4. Show that the set S of all unit vectors at all points of R2 forms a 3-surface in \mathbb{R}^4
- 5. Show that if S is a connected n-surface in \mathbb{R}^{n+1} and $g: S \to \mathbb{R}$ is continuous and takes on on finitely many values, then g is constant.
- 6. Describe the spherical image of the paraboloid $-x_1 + x^2 + x_3^2 = 0$ (Choose your orientation).
- 7. Show that if α : I \mathbb{R}^{n+1} is a parametrized curve with constant speed, then a (*t*) \perp a (*t*) for all *t*
- Let S be an n-surface in ℝ⁻⁺¹, let a : I → S be a parametrized curve. Let X be a vector tangent to S along a'. Verify that

$$(fX)' = f \mathbf{X} + f \mathbf{X}'$$

for all smooth functions f along a.

Tu

9. Compute V f where $I: \mathbb{R}^2 \to \operatorname{IR}$ and v $\in \mathbb{R}^2_p$, $p \in \mathbb{R}^2$.

$$f = x_2 = x_1 - x_2^2, v = (1, 1, \cos 0, \sin 0)$$

10. Let C be an oriented plane curve and $p \in C$ with $k(p) \neq 0$. Define the circle of curvature at p.

2

- 11. Find the length of the given parametrized curve $d:[0, 2\pi] \rightarrow \mathbb{R}^3$, where $a(t) = (\sqrt{\cos 2t}, \sin 2t), \sin 2t)$.
- 12. Let S be an oriented 2-surface in R3 and let p ES. Show that for each v, w E S_p

$$L_{\mu}(\vartheta) \ge L_{\mu}(co) = k(p) \times \omega.$$

- 1.3. Let Q: U₁ U_2 and $\psi: U_2 \to \mathbb{R}$ be smooth. Verify the chain rule $d(\psi \circ \phi) = d\psi \circ d\psi$.
- 4. Show that if $S = f^{-1}(c)$ is an n-surface in $\mathbb{R}^n \stackrel{\sim}{\sim}$ and $p \to S$, then the tangent space; to S at *p* is equal to the kernal of df_p .

$(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage 2.

Find the integral curve through p(0, 1) of the vector field X on R² given by

$$X(p) = (p, X(p))$$
 where $X(x_i, x_2) = (-2x_1, x_2)$.

now that the maximum and minimum values of the function $g(x_1, \dots, x_{n+1}) = \sum_{j=1}^{n+1} a_{j-1} x_{j-1}$

the unit n-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ where (a_{ij}) is a symmetric n x n matrix of real numbers, are the **nvalues** of the matrix (a).

- 17. Let S be an n-surface in \mathbb{R}^{n+1} , let X be a smooth tangent vector field on S and let $p \in S$ Then prove the existence of the maximal integral curve of X through p.
- 18. Show that if the spherical image of a connected n-surface is a single point, then S is contained in an n-plane.
- 19. For $0 \in IR$, let $\alpha_{ij} : [0, it] \implies^2$ be the parametrized curve in the unit sphere S² from the north pole p = (0, 0, 1) to the south pole q = (0, 0, -1), defined by $\alpha_{ij}(t) = (\cos 0 \sin t, \sin 0, \sin t, \cos t)$. Let $v = (p, 1, 0, 0) \in S_p$. Then compute $P_{\omega_0}(v)$.
- 20. Let S be an n-surface in $p + {}^{1}$, oriented by the unit normal vector field N. Let $p \in S$ and $v \in S_{p}$ Let a: I S be a parametrized curve with a (O = v for some t_o E I. Then prove that (t). N (p) = L_u (v). v.
- 21. Let $g: I \to III$ be a smooth function and let C denote the graph of g. Show that the curvature of C at the point *(t, g (t))* is $g''(t) 1(1+g'_{(t)}2)^{3/2}$ for an appropriate choice of orientation.
- 22. Find the Gaussian curvature of the ellipsoid $x_{4} = \frac{x_{24}^{2}}{4} = \frac{x_{34}^{3}}{9} = 1$
- 23. Show that the Weingarten map at each point of a parametrized n-surface in \mathbb{R}^{n+1} is self-adjoint.
- 24. State and prove inverse function theorem for n-surfaces.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries weightage 4.

25. Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} . Prove that the Gauss map maps S o the unit n-sphere Sⁿ.

Turn (

- 26. Let C be a connected, oriented plane curve and let 0: I C be a unit speed global parametrizationC. Then prove that β is either one-to-one or periodic. Further show that 0 is periodic iff C is compact.
- 27. Let S be a compact oriented n-surface in \mathbb{R}^{+*} . Prove : There exists a point $p \in S$ such that the second fundamental form at p is definite.
- 28. Let S be an n-surface in \mathbb{R}^{n+1} and let $f \to \mathbb{R}$. Suppose that $f \circ g$ is smooth for each level parametrization, $\varphi: U \to S$. Then prove that *f* is smooth.

 $(2 \times 4 = 8 \text{ weightage})$

1413 1413

be put

kings

when a cloci lace the cloc

her esculo.

when you