Reg. No.....................
FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016 (CUCSS)

Mathematics
MT 4E 05-OPERATIONS RESEARCH

Time : Three Hours
Maximum : 36 Weightage

Part A

Answer all questions.
Each question has weightage 1.

1. Briefly describe the minimum path problem.
2. For any feasible flow $\{x\},, \mathrm{i}=1,2, \ldots . m$ in the graph, prove that the flow x_{u} in the return are is not greater than the capacity of any cut in the graph.
3. State the problem of maximum potential difference in a network.
4. Describe the effect of deletion of Variables on the optimal solution of an LP problem.
5. What is goal programming.
6. Let $f(x)$ be a real-valued function in $\mathrm{E}_{\mathrm{n}}, \mathrm{G}(\mathrm{X})$ a vector function consisting of real valued functions $g_{\imath}(x), i=1,2, \ldots . \mathrm{m}$ as components and $\mathrm{F}(\mathrm{X}, \mathrm{Y})=f(x)+\mathrm{Y}^{\prime} \mathrm{G}(\mathrm{X})$ where Y is a vector in E_{m}. If $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ has a saddle point $\left(\mathrm{X}_{0}, \mathrm{Y}_{0}\right)$ for every Y 0 , prove that X_{0} is a minimum off (x) subject to the constraints $G(X) 0$.
7. Write Kuhn-Tucker conditions for the problem :

$$
\begin{gathered}
\text { Minimize } 16\left(x_{1}-2\right)^{2}+\left(4 x_{2}-9\right)^{2} \\
\text { subject to } \mathbf{x},-\mathbf{x}_{2}^{2} \geq \mathbf{0} \\
\mathbf{x},+\mathbf{x}_{2} \mathbf{5}-6, \\
\mathbf{x i}, \mathbf{x}_{2} \geq \mathbf{0} .
\end{gathered}
$$

8. What is the advantage of solving the dual problem in geometric programming problems.
9. Write the general form of a geometric programming problem.
10. Define the decision variables and the state variables in a dynamic programming problem.
11. Explain the difference between forward recursion and backward recursion in dynam programming.
12. Show that the function $f(x)=x^{2}, 0<x 1$ is unimodal in $(0,2)$.
13. What is meant by a sequential search plan.
14. Find the minimal point of $x^{3}-3 x+2,0<x<3$, taking' $E=0.01$ by the method of false position.

$$
\text { (14 x } 1=14 \text { weightage) }
$$

Part B

Answer any seven questions.
Each question has weightage 2.
15. Briefly describe an algorithm to find the spanning tree of minimum length if the length of each arc of the graph is given as a non-negative number.
16. A project consists of activities $A, B, C,-M$. In the following data $X-Y=C$ means Y can start after C days of Work on X. A, B, C can start simultaneously. K and M are the last activities and take 14 and 13 days respectively. $A-D=4, B-F=6, B-E=3, C E=4, D-H=5, D-F=3$, $\mathrm{E}-\mathrm{F}=10, \mathrm{~F}-\mathrm{G}=4, \mathrm{G}-\mathrm{I}=12, \mathrm{H}-\mathrm{I}=3, \mathrm{H}-\mathrm{J}=3, \mathrm{~J}-\mathrm{K}=8, \mathrm{I}-\mathrm{K}=7, \mathrm{I}-\mathrm{L}=7, \mathrm{~L}-\mathrm{M}=9$. Find the least time of completion of the project.
17. For the problem :

$$
\begin{aligned}
& \operatorname{Maximize} f=x,-x_{2}+2 \mathrm{x}_{3} \\
& \text { subject to } \quad-\mathrm{x}_{2}+x_{3} \leq 4, \\
& \mathrm{x},+\mathrm{x}_{2}-\mathrm{x}_{3}<3 \\
& 2 x,-2 x_{,}+3 x_{3} 15 \\
& \mathrm{x}_{1} x_{2}, \mathrm{x}_{3} \geq .
\end{aligned}
$$

assuming $\mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}$ respectively as the slack variables for the three constraints, the optimal table is the following :

Basis	Values	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{3}	21	4		1		2	1
x_{4}	7	2			1	1	0
x_{2}	24	5	1		3	1	
$-\boldsymbol{f}$	18	2				1	1

Carry out sensitivity analysis when the coefficient of x_{1} in the objective function changes to 2 .
8. Minimise $f=x_{1}^{2}+x z^{2}$
subject to $(\mathrm{x},-1)^{3}-\mathrm{x}_{2}^{2}>0$.
9. Mention briefly an algorithm for solving a quadratic programming problem.
). Explain the terms weight functions and normalised weight functions in geometric programming problems.
21. Describe a method of dynamic programming to solve the problem $z=f_{j=i}\left(u_{j}\right)$

$$
\begin{aligned}
& \text { subject to } \quad a, u, \\
& =1 \\
& \qquad a_{j}, b \in \mathrm{R}, a \geq 0, b>0
\end{aligned}
$$

22. Mimimize $+u 2+u$,
subject to $u_{1}+\mathrm{u}_{2}+u_{3} \mathbf{1 O}, u_{1}, \mathrm{u}_{2}, u_{3} \mathrm{O}$
by forward recursion.
23. Briefly describe the computational algorithm for Fibonacci search plan.
24. Find the point of minimum of $\mathrm{f}(x)=e^{x}+x^{2}$ in the interval $(0,1)$ using golden section method.
($7 \times 2=14$ weightage)

Part C

Answer any two questions.
Each question has weightage 4.
25. Find the maximum non-negative flow in the network described below, arc $\left(\mathrm{V}_{J}, \mathrm{~V}_{R}\right)$ being denoted as $(j, k), \mathrm{V}_{u}$ is the source and V_{b} is the sink.

Arc	$(\mathrm{a}, \mathbf{1})$	$(\mathrm{a}, 2)$	$(\mathbf{1}, 2)$	$(1,3)$	$(1,4)$	$(2,4)$	$(3,2)$	$(3,4)$	$(4,3)$	$(3, b)$	$(4, b)$
Capacity	8	$\mathbf{1 0}$	3	4	2	8	3	4	2	$\mathbf{1 0}$	9

26. Minimize $f(X)=(1+\mathrm{X}) \mathrm{x},+(-2-2$?. $) \mathrm{x}_{2}+(1+5$? $) \mathrm{x}_{3}$,
subject to $2 \mathrm{x},-\mathrm{x} 2+2 \mathrm{x}_{3} \mathrm{~S} 2$,

$$
\begin{array}{rr}
x_{1}-x_{2} & 3 \\
\mathrm{x}+2 \mathrm{x}_{2}-2 \mathrm{x}_{3} & 4 \\
\mathrm{x} \mathrm{x}_{2}, \mathrm{X}_{3}
\end{array}
$$

27. Minimise $\mathbf{x}_{2}^{2} \mathbf{x}_{3}-5 x_{1}$
subject to $5 \mathrm{x}, \quad-3 x_{\iota} \quad \mathbf{x}_{3}^{2}<2$
the variables being all positive.
28. Maximize $\sum_{n=1}^{4}\left(4 u_{n}-n u_{n}\right)$
subject to $\sum_{n=1}^{4} u_{n}=10, u_{n}$ O.
