(Pages : 3)

Name.....

Reg. No.

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2013

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours

Maximum 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

1. For the given function f, sketch level sets $f^{-1}(c)$ at the heights indicated.

 $f = x_2 = - c = -1, 0, 1.$

- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1^2 + x_2^2$
- 3. Show by example that the set of vectors tangent at a point p of a level set might be all of $\mathbb{R}p^+$.
- 4. Sketch the surface of revolution obtained by rotating *c* about the x_1 axis where *c* is the curve $-^2 + 2 = 1, x^2 > 0.$
- 5. Show that the plane R^2 is connected.
- 6. Describe the spherical image of the cone.

$$- {}^2 + \overline{x_2} \quad x_3^2 = 0, \, x_1 > 0.$$

(the surface is oriented by where f is the function $-x_1^2 + x_2 + x_3$).

- 7. Define a geodesic on an n-surface $S \subset \mathbf{r}^{+1}$. If S contains a straight line segment, prove that segment is a geodesic.
- Let S be an n-surface in ℝⁿ⁺¹, let a: I→S be a parametrised curve is S; X, Y smooth vector fields tangent to S along a. Then prove that (X = X' Y + X Y'

Turn over

C 42502

- 9. Compute the derivative ∇_{0} (X) where $\mathbf{v} \in \mathbb{R}^{2}_{\mu}$, $\mathbf{p} \in \mathbb{R}^{2}$ given by X (x1, x2 Xi, X2 X2, Xi), $v = (\cos 0, \sin 0 - \sin 0, \cos 0).$
- 10. Find global parametrisation of $x_2 = 0$. (You may choose the orientation).
- 11. Find the length of the parametrised curve $a: I \to \mathbb{R}^4$ where $a(t) = (\cos t, \sin t, \cos t, \sin t),$ $I = [0, 2\pi].$
- 12. Let S be an oriented n surface in \mathbb{R}^{n+1} . Define the first and second fundamental forms of S at $p \in S$.
- 13. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let $p \in S$. Give a formula for computing K(p), the Gauss-Kronecker curvature.
- 14. Let U be an open set in \mathbb{R}^n and let $Q: U \to \mathbb{R}$ be a smooth map. Define : dQ, the differential of Q.

(14 x 1 = 14 weightage)

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Let X be the vector field on \mathbb{R}^2 , X (p) = (p, X (p)) where X (x₁, x₂) = $\left(-2x_2, \frac{4}{2}\right)$. Find the integral curve of X through p = (1, 1).
- 16. Show that the maximum and minimum values of the function $g(x_1, \qquad = \begin{array}{c} n+1 \\ = \\ i = 1 \end{array} x_i x_j$ on
 - the unit n-sphere $\sum_{i=1}^{n+1} x^2 = 1$, where (ad) is a symmetric n real matrix, are eigenvalues of the matrix (a_v).
- 17. Show that the two orientations on the n-sphere $\sum_{i=1}^{n+1} x_i^2 = r^2$ of radius r > 0 are given by

 $N_1(p) = (p, p \ 1 \ r)$ and **N2** $(p) = (p, -p \ I \ r)$.

18. Describe the spherical image of the parabola $-x_1 + x_2 = 0$ (orientation left to your choice).

- 19. Let S denote the cylinder $x_1 + x^2 = 1$ in \mathbb{R}^- Show that a is a geodesic of S iff a is of the form $a(t) = (\cos(at + b), \sin(at + b), [Ct + Cd))$, for some $a, b, c, d \in \mathbb{R}$.
 - 20. Let $a : [0, \pi] = s^2$ be the half great circle in s^2 running from p = (0, 0, 1) to q = (0, 0, -1) defined by $a(t) = (\sin t, 0, \cos t)$. Let $v = (p, 1, 0, 0) \in S^2 p$, show that $P_a(v) = (q, -0, 0)$.
 - 21. Choosing your own orientation, compute the Weingarten map for the circular cylinder $x_2^2 + x_3^2 = 1$ in R³
 - 22. Let C be a connected oriented plane curve and let $13: I \rightarrow C$ be a unit speed global parametrization of C. Then prove that 13 is periodic if and only if C is compact.
 - 23. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} . Then, prove that the Gauss Kronecker curvature of S at *p* is non zero for all *p* E S if and only if second fundamental form s_p of S at *p* is definite for all *p* E S.
 - 24. Let S be an oriented n-surface in \mathbb{R}^{n+1} and let

$$\pi(\mathbf{S}) = \left\{ v \in \mathbb{R}_p^{n+1} \subseteq \mathbb{R}^{2n+2} : p \to \mathbf{S} \text{ and } \mathbf{v} \bullet \mathbf{N} \text{ (p)} \right\}$$

Prove that T (S) is a 2n—surface in \mathbb{R}^{n+2} . (7 x 2 = 14 weightage)

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Let U be an open set in \mathbb{R}^{n+1} and let f = U-3111 be smooth. Let $p \in U$ be a regular point of f and let c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]$ (Both set inclusion to be proved)
- 26. Let S be an n-surface in \mathbb{R}^{+1} , let $p \in S$ and let $v \in S$. Then prove the existence and 'uniqueness' of the maximal geodesic in S passing through p with initial velocity v.
- 27. Prove that the Weingarten map Lp is self-adjoint.
- 28. Let S be a compact oriented n-surface in \mathbb{R}^{n+1} Prove there exists a point p on S such that the second fundamental form at p is definite.

 $(2 \mathbf{x} 4 = 8 \text{ weightage})$