FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2013

(CUCSS)

Mathematics
MT 4C 16—DIFFERENTIAL GEOMETRY

Time : Three Hours
Maximum 36 Weightage

> Part A
> Answer all questions.
> Each question carries 1 weightage.

1. For the given function f, sketch level sets f^{-1} (c) at the heights indicated.

$$
\left.f \quad x_{2}\right)=-\quad c=-1,0,1 .
$$

2. Find and sketch the gradient field of the function $f\left(x_{1}, \mathrm{x}_{2}\right)=x_{1}^{2}+$
3. Show by example that the set of vectors tangent at a point p of a level set might be all of $\mathbb{R} \mathrm{p}^{+}$.
4. Sketch the surface of revolution obtained by rotating c about the x_{1} axis where c is the curve $-2{ }_{\mathrm{f}}^{2}=1, \times 2>0$.
5. Show that the plane R^{2} is connected.
6. Describe the spherical image of the cone.

$$
-^{2}+\overrightarrow{x_{2}} \quad x_{3}^{2}=0, x_{1}>0
$$

(the surface is oriented by where f is the function $-x_{1}^{2}+x 2+\mathrm{x} 3$).
7. Define a geodesic on an n-surface $S \subset \mathbb{1}^{+1}$ If S contains a straight line segment, prove that segment is a geodesic.
8. Let S be an n-surface in \mathbb{R}^{n+1}, let a $: I \rightarrow S$ be a parametrised curve is $S ; X, Y$ smooth vector fields tangent to S along a. Then prove that $\left(\mathrm{X} . \quad=\mathrm{X}^{\prime} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Y}^{\prime}\right.$
9. Compute the derivative $\nabla_{U}(\mathrm{X})$ where $\mathrm{vE} \mathbb{R}^{\wedge}{ }_{\rho}, \boldsymbol{p} \mathrm{ER} \mathrm{R}^{2}$ given by $\mathrm{X}\left(\mathrm{x} 1, \mathrm{x}_{2} \quad \mathrm{Xi}, \mathrm{X} 2-\mathrm{X} 2, \mathrm{Xi}\right)$, $v=(\cos 0, \sin 0-\sin 0, \cos 0)$.
10. Find global parametrisation of $\mathrm{x}_{2}-\quad=0$. (You may choose the orientation).
11. Find the length of the parametrised curve a: $\mathrm{I} \rightarrow \mathrm{R}^{4}$ where a $(t)=(\cos t, \sin t, \cos t, \sin t)$, $\mathrm{I}=[0,2 \pi]$.
12. Let S be an oriented n - surface in \mathbb{K}^{n+1} Define the first and second fundamental forms of S at $p \mathrm{ES}$.
13. Let S be an oriented n -surface in \mathbb{R}^{n+1} and let $p \mathrm{ES}$. Give a formula for computing $\mathrm{K}(p)$, the Gauss-Kronecker curvature.
14. Let U be an open set in \mathbb{R}^{n} and let $Q: U \rightarrow \mathbb{R}$ be a smooth map. Define : $d Q$, the differential of Q .

$$
(14 \times 1=14 \text { weightage })
$$

Part B

Answer any seven questions.
Each question carries 2 weightage.
15. Let X be the vector field on $\mathrm{R}^{2}, \mathrm{X}(p)=(p, \mathrm{X}(p))$ where $\mathrm{X}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(-2 \mathrm{x}_{2}, \frac{1}{2}\right)$. Find the integral curve of X through $p=(1,1)$.
16. Show that the maximum and minimum values of the function $g\left(x_{1}, \quad={ }_{i=1}^{\mathrm{n}+1} a_{\imath J} \mathrm{x}_{\mathrm{i}} x_{J}\right.$ on the unit n -sphere $\sum_{i=1}^{n+1} x i^{2}=1$, where (ad) is a symmetric n real matrix, are eigen values of the matrix $\left(\mathrm{a}_{\mathrm{y}}\right)$.
17. Show that the two orientations on the n-sphere $\sum_{i=1}^{\mathrm{n}+1} x i^{2}=r^{2}$ of radius $r>0$ are given by $N_{1}(p)=(p, p 1 r)$ and $\mathbf{N} \mathbf{2}(p)=(p,-p I r)$.
18. Describe the spherical image of the parabola $-\mathrm{x}_{1}+\mathrm{x} 2=0$ (orientation left to your choice).

- 19. Let S denote the cylinder $x_{\lrcorner}+\mathrm{x} 2=1$ in \mathbb{R}^{-}Show that a is a geodesic of S iff a is of the form $\mathrm{a}(t)=(\cos (a t+b), \sin (a t+b),[\mathrm{C} t+\mathbf{C} d))$, for some $\mathrm{a}, b, c, d \mathrm{E}$.

20. Let a: $[0, \pi] \boldsymbol{s}^{2}$ be the half great circle in s^{2} running from $p=(0,0,1)$ to $q=(0,0,-1)$ defined by a $(t)=(\sin t, 0, \cos t)$. Let $\mathrm{v}=(p, 1,0,0) \mathrm{E} \mathbf{S}^{-} p$, show that $\mathrm{P}_{\mathrm{a}}(\mathrm{v})=(q,-0,0)$.
21. Choosing your own orientation, compute the Weingarten map for the circular cylinder $x_{2}^{2}+x_{\overline{\overline{3}}}^{\overline{\bar{n}}}=1 \mathrm{~m} \mathrm{R}^{3}$
22. Let C be a connected oriented plane curve and let $13: \mathrm{I} \rightarrow \mathrm{C}$ be a unit speed global parametrization of C. Then prove that 13 is periodic if and only if C is compact.
23. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+}. Then, prove that the Gauss - Kronecker curvature of S at p is non - zero for all $p \mathrm{E} S$ if and only if second fundamental form s_{μ} of S at p is definite for all $p \mathrm{ES}$.
24. Let S be an oriented n-surface in $\mathbb{R}^{n+}{ }^{1}$ and let $\pi(\mathrm{S})=\left\{v \in \mathbb{R}_{p}^{n+1} \subseteq \mathbb{R}^{2 n+2}: p \mathrm{ES}\right.$ and $\mathrm{v} \cdot \mathrm{N}(\mathrm{p}) \quad$ Prove that $\mathrm{T}(\mathrm{S})$ is a $2 \mathrm{n}-$ surface in \mathbb{R}^{n+2}.

$$
(7 \times 2=14 \text { weightage })
$$

Part C

Answer any two questions.
Each question carries 4 weightage.
25. Let U be an open set in \mathbb{R}^{n+1} and let $f=\mathrm{U}-3111$ be smooth. Let $p \mathrm{E} \mathrm{U}$ be a regular point off and let $c=f(p)$. Then prove that the set of all vectors tangent to f^{-1} (c) at p is equal to $[\mathrm{V} f(p)]$ (Both set inclusion to be proved)
26. Let S be an n-surface in \mathbb{R}^{+1}, let $p \mathrm{E} S$ and let $\mathrm{v} \mathrm{E} S$. Then prove the existence and 'uniqueness' of the maximal geodesic in S passing through p with initial velocity v .
27. Prove that the Weingarten map $\mathrm{L} p$ is self-adjoint.
28. Let S be a compact oriented n-surface in \mathbb{R}^{n+1} Prove there exists a point p on S such that the second fundamental form at p is definite.

