C	6	1	2	6	2

(Pages : 3)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries 1 weightage.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to IR$ is a level set for some function $F \in \mathbb{R}^n \to R$.
- 2. Sketch the vector field X (X (p) (P, X (p))) where X (p) = -p.
- 3. Sketch the level set $f^{-1}(0)$ and typical values of the vector field ∇f for $p = f^{-1}(0)$ when $f(x_2) = x_1^2 f(x_2) f(x_1)$.
- 4. Let S be an (n-1) surface in \mathbb{R}^n given by $S = f^{-1}(C)$ where $f: U \to \mathbb{R}$ (U open in \mathbb{R} is such that $V f(p) \neq 0$ for all $p \in S$). Define the cylinder over S in \mathbb{R} and show that it is an n-surface in \mathbb{R} .
- 5. Describe the spherical image of one sheet of 2-sheeted hyperboloid x? x2 x3 = 4, $x_1 > 0$, oriented by $N = \nabla f / \|\nabla f\|$ where $f(x_1, x_2, x_3) = (2 x_2^2 x_3^2)$.
- **6. Prove** that geodesics have constant speed.
- 7. Let X and Y be smooth vector fields along the parametrized curve $a: I \to \mathbb{R}^{+1}$. Verify that $[X \cdot Y]' = Y + X .$
- 8. Define the Weingarten map $L_p: S_p \to S_p$ (with standard notation).
- 9. Compute $\nabla_v X$ where $v \in \mathbb{N}$ in p. p. E. R² and X is given by X (x₁, x₂) = (x₁, x₂, x₁, x₂, x₂²), v = (1, 0, 0, 1).
- 10. Let C be an oriented plane curve and let $p \to C$. Define : a parametrization of a segment of C containing p.

Turn over

2 C 61262

11. Find the length of the parametrized curve $\mathbf{I} \to \mathbb{R}^3$ where $\mathbf{I} = [-1, 1]$ and a $(t) = ((\cos 3t, \sin 3t, 4t))$.

- 12. Let S be an oriented n-surface in \mathbb{R}^{n-1} and let $p \to S$. Define the first and second fundamental forms of S at p.
- 13. Show that a parametrized 1-surface is simply a regular parametrised curve.
- 14. Let $\phi: v_1 \to v_2$ and $v_2 = \mathbb{R}^k$ be smooth verify the chain rule $d = \phi = d \psi \circ d \phi$.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Find the integral curve through p = (a, b) q the vector field X given in question 2.
- 16. Let $a, b, c \to \mathbb{R}$ be such that $ac b^2 > 0$. Determine the maximum and minimum values of the function $g(x_1, x_2) = xi + x_2^2$ on the ellipse a $x_1^2 + 2bx_i + x_2 + cx_2 = 1$.
- 17. Let S c \mathbb{R}^{n+1} be an oriented n-surface. Prove that there exists on S exactly two smooth normal vector fields.
- 18. Choosing an orientation, describe the spherical image of the cylinder $x_1^{n+1} = x_1^2 = 1$.
- 19. Show that a parametrized curve a in the unit sphere $\sum_{i=1}^{n+1} x^i = 1$ is a geodesic iff (if and only if) it is of the form

a (t) =
$$(\cos at) e_1 + (\sin at) e_2$$

for some orthogonal pair of unit vectors $\{e_1, e_2\}$ in $\mathbb R$ and some a E R

20. Let S be the n-sphere $\sum_{i=1}^{n+1} x_i^2 = r^2$ oriented by the inward unit normal vector field. Prove that the

Weingarten map of S is multiplication by -(r>0)

21. "Local parametrization of plane curves are in principle, easy to obtain". Explain the statement and illustrate with an example.

3 C 61262

- 22. Let C be a connected oriented plane curve and let 13: $I \to C$ be a unit speed global parametrization of C. Prove that β is either one-to-one or periodic.
- 23. Find the Gaussian curvature of the Cone

$$x_1^2 + \overline{x_2} - x_3^2 = 0, x_3 > 0$$

24. State and prove the inverse function theorem for n-surfaces.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. Let U be an open set in \mathbb{R} and let $f: U \to \mathbb{R}$ be smooth. Let p E U be a regular point of f and let C = f(p). Then prove the set of all vectors tangent to f (C) at p is equal to [V f(p)] (Both set inclusion to be proved).
- 26. Let S be a compact, connected oriented n-surface in \mathbb{R} Prove that the Gauss map maps S onto the unit sphere \mathbb{S}^n .
- 27. Let C be a connected, oriented plane curve. Prove: there exists a global parametrization of C.
- 28. "Locally n-surfaces and parametrized n-surfaces are the same". State the theorems which lead to the above assertion and outline their proofs.

 $(2 \times 4 = 8 \text{ weightage})$