FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MAY 2014

(CUCSS)

Mathematics
MT 4E 05-OPERATIONS RESEARCH
Time : Three Hours
Maximum : 36 Weightage

Part A
Answer all questions.
Each question has weightage 1.

1. Give an example to show that spanning tree of a graph need not be unique.
2. Write the problem of maximum flow in the generalized form.
3. Tasks $A, B, C, \ldots H, I$ constitute a project. The notation $X<Y$ means that the task X must be finished before Y can begin. With this notation,

$$
A<\mathbf{D}, \mathrm{A}<\mathbf{E}, \mathrm{B}<\mathbf{F}, \mathrm{D}<\mathbf{F}, \mathbf{C}<\mathbf{G}, \mathbf{C}<\mathbf{H}, \mathrm{F}<\mathbf{I}, \mathbf{G}<\mathbf{I},
$$

draw a graph to represent the sequence of tasks.
4. Describe the effect of introducing the constraint $3 x_{1}-2 x_{2} \quad 2$ in the L.P. problem

$$
\text { Minimize } Z=4 x+5 x_{2}
$$

$$
\begin{array}{ll}
\text { subject to } 2 \mathrm{x}_{1}+\mathrm{x}_{2} & 6 \\
\mathrm{x}_{1}+2 \mathrm{x} & 5 \\
\mathrm{x}_{1}+\mathrm{x} 2 & \mathbf{5} \\
x_{1}+4 x_{2} & 2 \\
\mathrm{x}_{\mathrm{i}}, \mathrm{x} 2 & 0 .
\end{array}
$$

Whose optimal solutio 1 is $\mathrm{x}_{1}=2 / 3, \mathrm{x}_{2}=1 / 3$.
5. What do you mean by parametric programming ?
6. Let $f(\mathrm{X})$ be a real-valued function in $\mathrm{E}_{\mathrm{n}}, \mathrm{G}(\mathrm{X})$ a vector function consisting of real-valued functions $\mathrm{g} ;(\mathrm{X}), i=1,2, \ldots, \mathrm{~m}$ as components and

$$
\mathbf{F}(\mathbf{X}, \mathbf{Y})=f(\mathbf{X})+\mathbf{Y}^{\prime} \mathbf{G}(\mathbf{X})
$$

where Y is a vector in E_{m}. If $F(X, Y)$ has a saddle point $\left(X_{0}, Y_{0}\right)$ for every $Y 0$, prove that X_{v} is a minimum of $f(X)$ subject to the constraints $\mathbf{G}(X) 5 _0$.
7. Write the Kuhn-Tucker conditions for the problem :

$$
\begin{aligned}
& \text { Minimize } \mathbf{f}_{=} \mathrm{x}^{2}+\mathrm{x} 2^{2} \\
& \text { subject to } \mathrm{x}_{1}+\mathrm{x}_{2} \mathbf{4}
\end{aligned}
$$

$$
2 x_{1}+x_{2} 5
$$

8. What is the advantage of solving the dual problem in a geometric programming problem.
9. What is the difference between a posynomial and a polynomial.
10. Describe a method of dynamic programming to solve the problem

$$
\begin{aligned}
& \operatorname{Maximize} j=1 f_{J}\left(u_{J}\right. \\
& \text { subject to } \sum_{j=1}^{\mathrm{n}} \mathrm{a}_{J} u_{J}=k \quad u_{J}>0, \mathrm{a}_{J}>0
\end{aligned}
$$

11. Define the term forward recursion as used in dynamic programming.
12. Solve by the method of dynamic programming

$$
\begin{aligned}
& \text { Maximize } \phi_{2}=\mathrm{f}_{2} f_{1} \text { where } f_{1}=\mathrm{u} 1, \mathbf{1}_{2}=\mathrm{u}_{2} \\
& \text { subject to }{ }^{1}<\mathrm{u} 1^{\text {s3 }}{ }_{-1<\mathbf{u}}{ }^{\mathbf{1}} .
\end{aligned}
$$

13. Show that the function $f(x)=x^{2}, \mathrm{O} \mathrm{x}<1$ is unimodal in $(0,2)$.
14. Find the minimal point of $x^{3}-3 x+2$, 05×3 by Newton-Raphson method.

$$
\text { (14 } \times 1=14 \text { weightage) }
$$

Part B

Answer any seven questions.
Each question has weightage 2.
15. Define the following terms :
(a) Tree ; (b) Spanning Tree.
16. Find the maximum flow in the following graph with the constraints

$$
25_{-} x_{i} 10,45 _x_{2} 12,-25_{-} x_{3} 5-4,0 \leq x_{4} 5-5,05 x_{5} 5=10
$$

17. Describe the effect of introducing new variables on the optimal solution of an L.P. problem.
18. Solve graphically :

$$
\begin{gathered}
\text { Maximize }\left(x_{1}-4\right)^{2}+\left(x_{2}-4\right)^{2} \\
\\
\text { subject to } x_{i}+x_{2} \\
5-6 \\
x_{i}-x_{2} \\
2 x_{1}+x_{2} \\
1 / 2 x_{1}-x_{2} \\
0, x_{2} \\
0.4
\end{gathered} .
$$

19. State Kuhn-Tucker theorem.
20. Write the orthogonality conditions in a general geometric programming problem.
21. What are the essential features of dynamic programming problem.
22. Minimize: $u_{1}{ }^{2}+u_{2}{ }^{2}+u_{3}{ }^{3}$

$$
\begin{array}{ccc}
\text { subject to } & \begin{array}{l}
u_{1}+\mathrm{u} 2+ \\
\\
\\
u_{1}, \mathrm{U} 2 \mathrm{U} 3
\end{array} & \mathbf{1 0} \\
\mathrm{a}^{\prime} \mathrm{O} .
\end{array}
$$

23. Briefly describe the Fibonacci search plan.
24. Find the minimal point of $\mathrm{x}^{3}-3 \mathrm{x}+2, \mathrm{O}<x<3$ by quadratic interpolation.

Part C

Answer any two questions.
Each question has weightage 4.
25. A project consists of activities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \quad, \mathrm{M}$. In the following data, $\mathrm{X}-\mathrm{Y}=\mathrm{C}$ means Y can start after C days of work on X . A, B, C can start simultaneously. K and M are the last activities and take 14 and 13 days repectively.
$A-D=4, B-F=6, B-E=3, C-E=4, D-H=5, D-F=3, E-F=10, F-G=4, G-I=12$,
$\mathrm{H}-\mathrm{I}=3, \mathrm{H}-\mathrm{J}=3, \mathrm{~J}-\mathrm{K}=8, \mathrm{I}-\mathrm{K}=\quad 7, \mathrm{~L}-\mathrm{M}=9$.
Find the least time of completion of the project.
26. A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40. The maximum demand of A is 6 units per week, and of B it is 8 units. The manufacturer has set up a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming, and sovle it.
27. Solve by the method of quadratic programming :

$$
\begin{array}{lc}
\text { Minimize } & -6 x_{1}+2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2}<2, \\
0, x 20 .
\end{array}
$$

28. Find the maximum of $\mathrm{f}(x)=-0.55+3 \mathrm{x}-\mathrm{x}^{2}$ by Rosenbrock algorithm starting from $x=0, h=1$.
