	Complement	ary Physics			
PH 2C 03—MECHANICS, RELATIVITY WAVES AND OSCILLATION					
ne :	: Three Hours	Maximum : 30 Weightage			
	Sectio	on A			
Answer all questions.					
1.	The motion of a projectile as observed from a matter projectile is :				
	(a) Parabolic. (b) Elliptical.			
	(c) Straight line. (d) Circular.			
2.	. If the linear momentum of a body is increased	by 50 %, its KE will increase by :			
	(a) 50 %. (b) 100 %.			
	(c) 125 %. (c) 150 %.			
3. ′	. The centre of mass of a body lies :				
	(a) At geometric centre. (b) Always inside body.			
	(c) Always outside body. (d) Within or outside body.			
4. The operator $\frac{1}{dx}$ operates on eigenfunction gives eigenvalue K, then corresponding eigenvector					
ls.					
	(a) Kx . (b)	$(\cos Kx)$			
	(c) $\sin Kx$. (c)	l) <i>e</i> [*] .			
5.	. Which of the following equations represent ${f S}$	H.M. ?			
	(a) A $\sin wt + B \cos wt$. (b)) A sin $wt + B \cos 2 wt$.			
	(c) A sine <i>wt</i> . (c	$e^{\sin wt}$			
6.	. A spring pendulum has period T. If the spring to same mass. The period of this pendulum w	is broken into two halves. One that piece connected 11 be :			

- <u>T</u> (b) (a) T.
- (d) $\frac{T}{\alpha}$. (c)

Turn over

(Pages : 3)

Name

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012 (CCSS)

Time

C 25124

7. The equation for progressive wave is $Y = A \sin (100 \pi t - 0.02z)$. Then velocity of *wave is* :

(a) 500 π.	(b) 5000 it.		
(c) 50 π.	(d) 5 n.		

^{8.} A frame of reference which is moving with constant velocity with respect to a frame at rest is

(a) Inertial.	(b) Non-inertial.		
(c) Rotating.	(d) Absolute.		

9. Rest mass of a body m_{ν} , its dynamic mass when it is moving with a velocity equal to half the speed of light is

(a)	2m _o	(b)	2
(c)	$m_{\rm U}$	(d)	m _⊍ 2

10. Angular momentum of a body under central force field :

(a) Zero.(b) Constant.(c) Increases.(d) Decreases.

11. A bullet of mass a and velocity b is fired into large block mass c. The final velocity of system is :

(a)	cb_ a + b	(b)	^b с (а +b).
(c)	<i>ab_</i> a+c	(d)	$\frac{1}{a}(a+c),$

12. If speed of a body of rest mass *in* and length L in the direction of motion, is equal to speed of light. Then its relativistic mass and length are :

(a) m, L.	(b) 0, 0.
(c) 0, infinity.	(d) Infinity, 0.

 $(12 \text{ x} \frac{1}{4} = 3 \text{ weightage})$

Section **B**

Answer all the questions.

- 13. Prove that force is negative gradient of potential.
- 14. What is meant by linear restoring force ?
- 15. Define stable, neutral and unstable equilibrium using potential energy curve.
- 16. What is meant by inertial frame-of reference ? Give example.
- 17. Explain energy function.

~

18. Under what condition Lorenz transformation reduces to Galilean transformation ?

- [9. Show that curl of conservative forces vanishes.
- 20. Show that all the inertial frames in constant relative motion are equivalent.
- **21.** Give the basic principle of S.T.M.

x 1 = 9 weightage)

Section C

Answer any five questions.

:2. Show that speed of rocket is twice the exhaust speed if $\frac{M}{m} = e^2$.

23. The mass of a particle is triple its rest mass. What is its speed ?

?,4. An eigenfunction of the operator $\frac{d^2}{dx}$ is $\psi = e^{-1}$ Find the corresponding eigenvalue.

- 25. A particle of mass 0.1 kg. is in a field of potential $U = 5x^2 + 10$ J/kg. Find the frequency of oscillation.
- **26.** Two particles of masses 2 kg. and 10 kg. with position vectors 3i + 2j + k and i j + k respectively. Find out the position vector of centre of mass.
- 27. Prove that gravitational force is conservative.
- 18. The position vector of a particle of mass m under the influence of force is $r = A \sin wt \hat{i} + B \cos wt j$. Find out expression for force.

 $(5 \ge 2 = 10 \text{ weightage})$

Section D

Answer any two questions.

- **29.** What are Fundamental postulates of special theory of relaivity ? Obtain Lorentz transformation equation.
- 30. What is meant by Wave function ? Develop Schrödinger's one-dimensional time dependent equation.
- 31. Give the basic principles of rocket propulsion. Hence derive an expression for final velocity of rocket.

 $(2 \times 4 = 8 \text{ weightage})$