SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2012

(CCSS)

Complementary Physics
PH 2C O3—MECHANICS, RELATIVITY WAVES AND OSCILLATION

Time : Three Hours
Maximum : 30 Weightage

Section A

Answer all questions.

1. The motion of a projectile as observed from a matter projectile is:
(a) Parabolic.
(b) Elliptical.
(c) Straight line.
(d) Circular.
2. If the linear momentum of a body is increased by 50%, its KE will increase by :
(a) 50%.
(b) 100%.
(c) 125%.
(d) 150%.
3. The centre of mass of a body lies :
(a) At geometric centre.
(b) Always inside body.
(c) Always outside body.
(d) Within or outside body.
4. The operator $\overline{d x}$ operates on eigenfunction gives eigenvalue K, then corresponding eigenvector Is.
(a) $\mathrm{K} x$.
(b) $\cos \mathrm{K} x$.
(c) $\sin K x$.
(d) e^{\cdot}.
5. Which of the following equations represent S.H.M. ?
(a) $\mathrm{A} \sin w t+\mathrm{B} \cos w t$.
(b) $\mathrm{A} \sin w t+\mathrm{B} \cos 2 w t$.
(c) A sine $w t$.
(d) $e^{\sin w t}$
6. A spring pendulum has period T. If the spring is broken into two halves. One that piece connected to same mass. The period of this pendulum will be :
(a) T .
(b) T
(c)
(d) $\frac{T}{u}$.
7. The equation for progressive wave is $Y=A \sin (100 \pi t-0.02 z)$. Then velocity of wave is :
(a) 500π.
(b) 5000 it .
(c) 50π.
(d) 5 n .
8. A frame of reference which is moving with constant velocity with respect to a frame at rest is
(a) Inertial.
(b) Non-inertial.
(c) Rotating.
(d) Absolute.
9. Rest mass of a body m_{u}, its dynamic mass when it is moving with a velocity equal to half the speed
of light is
(a) $2 \mathrm{~m}_{\mathrm{o}}$.
(b) 2
(c) m_{u}
(d) $m_{\underline{\mathbf{u}}}$
10. Angular momentum of a body under central force field:
(a) Zero.
(b) Constant.
(c) Increases.
(d) Decreases.
11. A bullet of mass a and velocity b is fired into large block mass c. The final velocity of system is :
(a) $\quad c b_{-}$.
(b) ${ }_{c}^{b}(a+b)$.
(c) $\begin{array}{r}a b_{-} \\ a+c\end{array}$
(d) $\mathrm{a}^{2}(a+c)$,
12. If speed of a body of rest mass in and length L in the direction of motion, is equal to speed of light. Then its relativistic mass and length are :
(a) m, L.
(b) O, O.
(c) O, infinity.
(d) Infinity, 0 .

$$
\left(12 x^{1} / 4=3 \text { weightage }\right)
$$

Section B

Answer all the questions.
13. Prove that force is negative gradient of potential.
14. What is meant by linear restoring force ?
15. Define stable, neutral and unstable equilibrium using potential energy curve.
16. What is meant by inertial frame-of reference ? Give example.
17. Explain energy function.
18. Under what condition Lorenz transformation reduces to Galilean transformation ?
[9. Show that curl of conservative forces vanishes.
20. Show that all the inertial frames in constant relative motion are equivalent.
21. Give the basic principle of S.T.M.

$$
\text { x } 1=9 \text { weightage) }
$$

Section C

Answer any five questions.
:2. Show that speed of rocket is twice the exhaust speed if $\frac{M-}{}=e^{2}$.
23. The mass of a particle is triple its rest mass. What is its speed?

25. A particle of mass 0.1 kg . is in a field of potential $U=5 x^{2}+10 \mathrm{~J} / \mathrm{kg}$. Find the frequency of oscillation.
26. Two particles of masses 2 kg . and 10 kg . with position vectors $3 \mathrm{i}+2 \mathrm{j}+\mathrm{k}$ and $i-j+k$ respectively. Find out the position vector of centre of mass.
27. Prove that gravitational force is conservative.
!8. The position vector of a particle of mass m under the influecne of force is $r=\mathbf{A} \boldsymbol{\operatorname { s i n }} \omega t \hat{i}+\mathbf{B} \boldsymbol{\operatorname { c o s }} \nu \nu t j$. Find out expression for force.

$$
\text { (} 5 \times 2=10 \text { weightage })
$$

Section D

Answer any two questions.
29. What are Fundamental postulates of special theory of relaivity ? Obtain Lorentz transformation equation.
30. What is meant by Wave function ? Develop Schrödinger's one-dimensional time dependent equation.
31. Give the basic principles of rocket propulsion. Hence derive an expression for final velocity of rocket.

$$
\text { (} 2 \times 4=8 \text { weightage) }
$$

