C 41461	(Pag	es : 3)	Name			
			Reg. No			
FOU	FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH 2013					
	(C	CSS)				
	Ph	ysics				
P	H4 C07—ELECTRICITY, MAGN	ETISM AND NUC	LEAR PHYSICS			
Γime : Three H	lours		Maximum: 30 Weightage			
	Sec	tion I				
		11 questions. arries ¼ weightage.				
1. Two char will :	rges are placed at a fixed distance a	part. If a glass slab is	placed between them, the force			
(a)	Increase.	(b) Decrease.				
(c)]	Remains the same.	(d) Become zero.				
2. An elect	ric charge in uniform motion produ	ces:				
(a) A	An electric field.	(b) An magnetic fiel	ld.			
(c)]	Both electric and magnetic field. (d) Neither electric no	or magnetic field.			
3. The pote	ential inside a hollow spherical cond	luctor				
(a)	Is a constant.					
(b)	Varies inversely as the distance from	om the centre.				
(c)	Varies directly as the distance from	the centre.				
(d)	Varies inversely as the square of the	ne distance from the c	entre.			
=	pacity of a parallel plate condenser is halved will be :	is C. Its capacity wh	en the separation between the			
(a)	4C.	(b) 2C.				
(c)	<u>z</u> .	(d) 4•				
	sitivity of moving coil galvanometer	_				
` ,	The angle of deflection.	(b) Earth's magnetic				
(c)	Torsional constant of spring.	(d) Moment of inerti	ia of the coil.			

Turn over

		2		C 41461	
6. The coil	of a tangent galvanometer is put	in the	magnetic meridian to :		
(a)	a) Avoid the magnetic effect of the earth field.				
(b)	Produce intense magnetic field at the centre of the coil.				
(c)	Avoid error due to parallax.				
(d)	Produce a field at right angls to t	he ear	rth's field.		
7. A poten	tiometer is an ideal instrument for	r mea	suring e.m.f. because :		
(a)	It has a long wire.	(b)	It does not disturb the p.d. if measure	s.	
(c)	It has a sensitive galvanometer.	(d) N	one of the above.		
8. The mag	gnetic field at which superconduct	ivity v	variables is called		
9. The dea	nsity ' d ' of nuclear matter varies w	rith nu	ıcleon number A as :		
• (a)	$d\alpha A^3$.	(b)	$d\alpha A^{}$.		
(c)	dαA.	(d)	$-d\alpha A^0$.		
10. Which o	one of the following will penetrate	in a tl	nin glass slab ?		
(a)	a-rays.	(b)	β-rays		
(c)	γ-rays	(d)	Cathode rays.		
11. A good	modulator should:				
(a)	Not be a gas only.	(b)	Not have appetite for neutrons only.		
	Be light in mass number only.	(d)	Be all the above.		
	ld that binds the quarks is :	()			
(a)	Electric field.	(b)	. Colour field.		
(c)	Magnetic field.	(d)	Gravitational field.		
(0)	magnetic field.	(u)	Gravitational field. $(12 \times \% = 3 \text{ w})$	voightogo)	
	Se	ction		erginage)	
Answer all questions					

Answer **all** questions.

Each question carries a weight of 1.

- 13. Define electric field intensity at a point.
- 14. What is an equipotential surface? Mention one property.
- 15. How does the drift velocity of an electron in a metallic conductor vary with increase in temperature?
- 16. Why is diamagnetism almost independent of temperature.
- 17. Why are manganin wires preferred for the manufacture of standard resistances?
- 18. How is a deflection magnetometer set in the tan B position?
- 19. What is the principle of working of a nuclear bomb?
- 20. What are nuclear forces? Give its characteristics.
- 21. What are Leptons?

 $(9 \times 1 = 9 \text{ weightage})$

3 C 41461

Section III

Answer any **five** questions. Each question carries a weight of 2.

- 22. A -parallel plate capacitor of area $2~\text{m.}^2$ with a dielectric constant 7 is charged to a potential of 100 V. if the plate separation is $1~\text{x}~10^{-4}~\text{m.}$, calculate the capacitance and the energy stored in the capacitor.
- 23. An ammeter and a resistance 1090 Ω are connected in series with 110 V mains. The ammeter reads 9.1 A. What is its resistance? A voltmeter is connected across the terminals of the 1090 resistance. What voltage will it record?
- 24. What is a Carey Fosters bridge? Where is it used?
- 25. Define the magnetic elements.
- 26. If 10 % of a radioactive element decays in 5 days, calculate the amount of the element left after 20 days.
- 27. Explain the phenomenon of carbon dating.
- 28. Briefly explain the theory. of the origin of the universe.

(5 x = 10 weightage)

Section IV

Answer any **two** questions. Each question carries a weight of 4.

- 29. Explain the principle and working of a potentiometer. Describe an experiment to determine the resistance of a wire using potentiometer.
- 30. Give a law of disintegration of a radioactive substance. Derive an expression for the half-life of a radioactive element.
- 31. Explain the principle and working of a cyclotron. An electron beam entering a uniform magnetic field of intensity .1.4 Weber/m.² is deflected along a path of radius of curvature 10⁻⁶ m. Calculate the velocity of the electron.

 $(2 \times 4 = 8 \text{ weightage})$

D 31899	(Pa	ges : 4)	Name			
			Reg. No			
SECOND SEM	IESTER B.Sc. DEGREE DECEM	•	LEMENTARY) EXAMINATION 012			
	Physics—(Comp	lementar	ry Course)			
PH 2C 03	3—MECHANICS, WAVES	, RELAT	IVITY AND OSCILLATIONS			
Time : Three Hours			Maximum: 30 Weightage			
	Sec	ction A				
	Answer all	the quest	ions.			
1. A body is	projected at an angle to the ho	rizontal. T	Then path of the body in a frame of reference			
			l component of velocity of body:			
(a) V	ertical straight line.	(b) Hori	zontal straight line.			
(c) P	arabola.	(d) Hype	erbola.			
2. A plumb	line is suspended from the roo	of of a rail	road car. When car is moving on a circular			
track, th	e plumb line inclines ?					
(a) Fo	orward.	(b) Rea	rward.			
(c) To	owards centre of path.	(d) Awa	y from centre of path.			
3. Two train	as A and B are running in sam	e directio	n on parallel roads such that A is faster than			
B, Packets of equal weight are transferred between them. What do you think will happen due						
to this?						
()	will be accelerated B will be					
. ,	(b) B will be accelerated A will be retarded.(c) No change in A but B will be accelerated.					
` ′	No change in B but A will be a					
. ,	e is revolving round earth, w					
	near momentum.		ular momentum.			
(c) A	real velocity.	(d) Tota	al energy.			
5. An object	t of mass 'm' moving with a ve	locity u is	approaching a second object of same mass at			
rest. Total kinetic energy as viewed from the centre of mass is:						
(a) ,	พบ	(b) 1	nu ^g .			
(c)	1 mv 14	(d) Nor	ne of these. Turn over			
			I di fi Over			

6. Eiger	nvalue of the operator $\frac{d}{dx}$ is 5 th	nen corresponding eigenfunc	tion is :			
(a)	5x •	(b) $\sin 5x$.				
(c)	e x	(d) 5.				
7. If freq	quency in S.H.M. is f then frequ	uency of its kinetic energy is	:			
(a)	2	(b) f .				
(c)	$_{2f}$.	(d) 4f.				
8. The ed	quation for progressive wave is	Y = 10 sin $2\pi (5t - 20x)$. The	en wavele	ength of wave is		
	50.	(b) 20.				
(c)	0.5.	(d) 0.05.				
9. Which	of the following frames of refere	ence is non-inertial?				
(a)	A car in circular motion.					
(b)	A car in uniform motion.					
(c)	A car at rest.					
(d)	A car is moving along straight l	line with same velocity.				
	d of a body of rest mass m and lent, Then its relativistic mass and		otion is L,	is equal to speed		
(a)	m, L.	(b) 0, 0.				
(c)	0, Infinity.	(d) Infinity, 0.				
11. Amplit	11. Amplitude of damped oscillations:					
(a)	Increases linearly with time.					
(b)	Decreases linearly with time.					
(c)	Increases exponentially with tir	ne.				
(d)	Decreases exponentially with ti	me.				
12. Energy radiated per unit volume through progressive waves is:						
(a)	Directly proportional to amplitu	de.				
(b)	Directly proportional to square	of the amplitude.				
(c)	Inversely proportional to amplit	ude.				
(d)	Inversely proportional to square	e of amplitude.				
			(12 x	= 3 weightage)		