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INTRODUCTION 

1.1 Definition and Preliminaries 

The Concept of Convexity is a very old topic which is very simple and natural notion. 

Motivated by the properties of convex bodies such as the five platonic solids and other 

polyhedra,  and their structures  it was systematically studied by Newton Minkowski and Others. 

The properties of convex sets are classified mainly in to three aspects; qualitative, quantitative 

and combinatorial.  

It is well known that, a subset C of a real vector space is convex if and only if it contains 

with any pair of points in C the entire line segment joining them. It can be easily observed that 

intersection of any family of convex sets is convex, even though the intersection may be empty. 

T he famous Helly type theorems made tremendous impact in the development of Combinatorial 

convexity theory and has been studied, applied and generalized by many others. These theorems 

are stated as follows.[2] 

Helly’s Theorem: Let B= { B1, B2…Bm} be acollection of convex sets in R
n
 with 𝑚 ≥ 𝑛 + 1. If 

every subfamily of n+1 sets in has nonempty intersection, then  𝐵𝑖
𝑚
𝑖=1 is 

nonempty. 

Caratheodory’s Theorem: If S is a nonempty subset of then every x in the convex hull of S can 

be expressed as a convex combination of n+1  or fewer points. 

Radon’s Theorem: Let S = { x1, x2 …….xm} be any finite set of  points in R
n
. If m  n+2, then S 

can be partitioned in to two disjoint sets S1 and S2 such thatCo(S1) Co(S2) is 

nonempty. 

 Not only to generalize these classical theorems, but also to unify properties of a variety of 

Mathematical structures such as vector spaces, lattices, metric spaces and graphs, an axiomatic 

foundation of convexity was laid down by Levi. 

Definition: A convexity on a set X is a collection C of subsets of X such that 
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i). The empty set  and X are in C . 

 ii). C  is stable for intersection, that is, If  D  Cis nonempty, then  { C D  }is inC. 

 iii). C is stable for nested Union,that is, If  D  Cis nonempty and totally ordered under 

inclusion,  then  { C D  }is inC. 

C  is called a convexity on X , ( X,C, ) is called convexity space or convex structure and members 

of are called convex sets. For any set A  X, Co(A) =  { 𝐶  𝑋 ∶ 𝐴𝐶C} 

Is called the convex hull of A. Convex hull of a finite number of points is called  apolytope. 

Example:1).Let X = R and let  C= { AR: if x, y  A and x  z  y , then,z  A.} Then C. is a 

convexity on R 

Example:2).For any nonempty set X, {, X} and P(X) are clearly convexity spaces. 

Example:3). Let X = R
n
, and let C= {AR

n
: if x, y A and 0  t  1, then,x+(1-t) (y-x)  A}. 

Then C. is a convexity on R
2 

Definition: Let ( X,C, )  be a convexity space, C  C  is said to be a half space if  

                     its compliment is convex. 

Definition:  A subset 𝐴 in a convexity space 𝑋 is convexly independent if for any point 

𝑥 𝑖𝑛 𝐴, 𝑥 𝐶𝑜 (𝐴 − 𝑥) 

Example 4): Any two distinct elements in 𝑅  are convexly independent and any three distinct 

elements are convexly dependent. In 𝑅2 any three non collinear points are 

convexly independent. All the points on a Circle are convexly independent.. 

Example 5): In 𝑅2 ,with respect to usual convexity, The convex hull of a finite set 𝐴  is the 

polygonal area determined by a maximal convexly independent subset of A. 
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Theorem 1): Let 𝑋 be a Real normed space and 𝑓 be a bounded linear functional on X and a 

 ∈ 𝑅. Then the sets  𝑬𝟏 = { ∈ 𝑋:  𝑓(𝑥) > } ,𝑬𝟐= { 𝑥 ∈ 𝑋:  𝑓(𝑥) ≥ }, 𝑬𝟑 =   { 

𝑥 ∈ 𝑋:  𝑓(𝑥) < }  ,and 𝑬𝟒 = {𝑥 ∈ 𝑋:  𝑓(𝑥) ≤ } are half spaces 

Proof:       We prove 𝑬𝟏  is a convex set. The convexity of the other sets may be proved in a 

similar manner. Then each is a half space follows from the fact that    𝑬𝟏  is the 

compliment of 𝑬𝟒  and that    𝑬𝟐  is the compliment of 𝑬𝟑. 

                  Let 𝑥, 𝑦 ∈ 𝑬𝟏, and 𝑡 ∈ (0,1)Then,  

      𝑥 +  1 − 𝑡  𝑦 − 𝑥  = 𝑓 𝑥 +  1 − 𝑡  𝑓 𝑦 − 𝑓 𝑥   . 

     That is, 𝑥 +  1 − 𝑡  𝑦 − 𝑥  C Hence C is convex 

▄ 

Example: 4). Let X = R
n 
and the convexity be defined as in example 3 and 𝑓be a linear 

functional on X. Let  R and C = { x X : 𝑓 𝑥   ≤  }. Then C is convex, for, if 

x,yC and t (0,1). Then,  𝑥 +  1 − 𝑡  𝑦 − 𝑥  = 𝑓 𝑥 +  1 − 𝑡  𝑓 𝑦 −

𝑓 𝑥  ≤   . 

That is, 𝑥 +  1 − 𝑡  𝑦 − 𝑥  C Hence C is convex. The compliment of C is the set 

C
c 
 ={ x  X : 𝑓 𝑥  } is also convex. Hence C is a half space. 

Definition: Let (X, C) be a convexity space. C  is  said to be of arity ≤ n if its convex sets are  

determined by polytopes. That is, a set C is convex if and only if Co(F)  C for each 

subset F of cardinality at most n. 

Example 5): The Euclidean convexity on  R
n 
is of arity 2 because it is induced by an interval 

function defined by 

I (x, y).  = { tx + (1-t)y : t  (0, 1) } 
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Example 6):  Let X be any set with more than five elements. Let C  be the collection of subsets 

C   of  X such that  𝐶  ≤ 5 and  X. Then , is a convexity on X and it is of arity 6. 

 

1.2. Seperation Axioms 

Definition: A convexity space X is said to have the separation  property 

 S1  : If all singletons are convex. 

 S2  : If any two distinct points are separated by  half spaces. That is,  

        for any x1, x2  X, x1  x2, there is a half space H of X such  that 

        x1   H and x2   H . 

S3   :   If any convex set C and any point not in C can be separated by half spaces. 

           That is, if C  X and x  X \ C, then there is a half space H of X such that  

           C  H and x  H. 

S4  :   If any two disjoint convex sets can be separated by half spaces. That is,  

          if C1 and C2 are disjoint convex subsets of X, then there is a half space H  

          such that  C1  H and C2   X \ H.  

The usual convexity on any vector space satisfies all the separation properties. 

The trivial convexity consisting of the set X ( with at least two elements) satisfies none of 

the above axioms. 

Definition: A subset S of an interval space is star shaped at a point p  S if for every x S,  

                   I(x, p)  S. The star centre is the set of all points at which S is star shaped. 
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Example7:  

  

 

Figure 1 

Set star shaped at xo 

The object in Figure 2. Gives en example of a set whose star centre is empty 

 

Figure 2. 

Definition: Let X be a convexity space. Then, 

1. The Helly number of X h is the smallest number n such that for each finite set F  X 

with cardinality at least n+1 , 

 { Co {F \ {a}: a  F}   
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( That is F is Helly (H-) dependent). 

2. The Caratheodory number of X c is the smallest n such that for each F  X with 

cardinality at least n+1, 

 Co (F)   { Co(F \ {a} ): a  F} 

( That is F is caratheodory (C-) dependent). 

3. The Radon number of X r is the smallest  number n such that any F  X with cardinality 

at least n+1 can be partitioned in to sets F1 and F2 such that  

Co(F1)  Co(F2)    

( That is F is Radon (R-) dependent). 

 

4. The exchange number ( or  Sierskma number) of X e is the smallest number n such that 

for each F  X with cardinality at least n+1 and for each p  F,  

Co (F \ {p})   { Co(F \ {a} ) : a  F, a  p}.  

( That is F is Exchange  (E-) dependent). 

Attempts were made to find inter relation between these invariants and resulted in the 

following theorems. 

Theorem: Levi’s Theorem[]. Let ( X, C ) be a convexity space. Then the existence of r implies 

        the existence of h and h  r.  

Theorem: Eckhoff- Jamison inequality []. If c and h exists for a convexity space, the r exists and  

                 r  c(h-1) if h  1and c   

Theorem: e-1  c  max {h, e-1} 

                 For the usual convexity on R
n
,  h = c = r = e = n +1 
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Figure 3. 

Radon Partition 

Definition:  A convexity space is said to be join hull commutative if for any convex set C and  

any  p X , Co ( C  {p}) =  { Co ({c, p}) : c  C}. 

Example 8):  Let X be any set with more than six elements. Let C  be the collection of subsets C   

of  X such that  𝐶  ≤ 5 and  X. Then , is a convexity on X. Let C be any sub set of cardinality 5 

and p an element of X which is not in C Then C  {p} is not convex and Co( C  {p}) = X. But  

 { Co ({c, p}) : c  C } = C  {p}. 

Gist of The Report 

     In this report we analyze different convex structures on normed  spaces. In a 

normed space there is the convexity associated with the linear space structure and also convexity 

induced by the interval function defined by the norm. It  is found that there is difference between 

the two. Also The H convexity symmetrically generated by a family of linear functional is also 

studied. It is also observed that in linear spaces of finite dimension greater than 2, there are 

convexity of infinite arity. An example is given to show that the H- Convexity need not be join 

hull commutative. Also the study of the parameters such as Helly number, Caratheodory number,  

Radon number and has been done. 
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CONVEX STRUCTURES IN NORMED SPACES 

2.1. Normed spaces 

Definition:  Let 𝑋 be a Linear space over a field K. A set 𝐸𝑋  is convex if f if 

       𝑡𝑥 + (1 − 𝑡)𝑦  𝐸 whenever 𝑥, 𝑦  𝐸 and 𝑡   0, 1 . 

Definition  1 : Let X be a Linear space. A norm on X is a Function 

                        .    :   → R, satisfying the following properties. 

For all x, y, z in X and k in the field K. 

1.  𝑥  ≥ 0 and  𝑥  = 0 if and only if x = 0. (Positive definiteness) 

2.  𝑥 + 𝑦  ≤  𝑥  +  𝑦 .  ( Triangle inequality) 

3.  𝑘𝑥    =  𝑘   𝑥       

Definition  1 : Let X be a Linear space over a field K. An inner product on X is a Function 

          .    : xX   → K, satisfying the following properties. 

For any x, y, z  X and k  K  

i).   𝑥, 𝑥  ≥ 0 and   𝑥, 𝑥  = 0 if and only if x = 0 

ii).   𝑥 + 𝑦, 𝑧   =   𝑥, 𝑧   +  𝑦, 𝑧  and 

         𝑘𝑥, 𝑦       = k  𝑥, 𝑦  

iii).   𝑥, 𝑦         =    𝑦, 𝑥          

A linear space together with an inner product defined on it is called an inner product space.  

Remark: An inner product defines a norm on the linear space X by 

  𝑥    =       𝑥, 𝑥    

   Theorem 2.1(Cauchy Schwartz inequality): Let X  be an inner product space and  .    the  

norm induced by the inner product. Then for x, y  X,  
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                |  𝑥,  𝑦  | ≤   𝑥    𝑦 . And the equality holds if and only if x and y are linearly  

dependent. 

▄ 

Theorem 2.2):  If the norm is induced by an inner product,  the equality in the Triangle 

inequality  holds only if y = kx for some k  ≥ 0 . We have that,  

                        𝑥 + 𝑦 2 =  𝑥 + 𝑦,  𝑥 + 𝑦   =  𝑥 2 +  𝑦 2 + 2 Re  𝑥,  𝑦    

                       ( 𝑥  +  𝑦 )2    =  𝑥 2 +  𝑦 2 + 2  𝑥    𝑦 .      

Suppose equality holds in Triangle inequality, Then,   𝑅𝑒 𝑥,  𝑦   =  𝑥    𝑦  which imply that 

  𝑥,  𝑦   =  𝑥    𝑦 . Then by Cauchy Schwartz inequality,  x and y are linearly 

dependent. Let y = kx. Then  

 𝑥,  𝑦   =  𝑥,  𝑘𝑥   = 𝑘   𝑥,  𝑦   =  𝑥    𝑘𝑥  =    𝑘   𝑥    𝑦 .  Similarly, 

 𝑦,  𝑥   =  𝑘𝑥,  𝑥   = k  𝑥,  𝑦   =  𝑘𝑥    𝑥  =    𝑘   𝑥    𝑦 .   

 If k ≠ 0 Then k =    𝑘   ≥ 0   

▀ 

2.2. Interval Convexity 

Definition: Let X be any set. An interval function on X is a function 𝐼 ∶ 𝑋 × 𝑋 → 𝑃 𝑋  Such   

that  

1. 𝐼 (𝑎, 𝑏)  =  𝐼(𝑏, 𝑎) 

2. 𝑎, 𝑏 ∈  𝐼(𝑎, 𝑏)   

 

A Convexity is called interval convexity if its convexity is induced by an interval function. That 

is,  𝐴  𝑋  is convex if 𝐼 (𝑎, 𝑏)  𝐴  whenever 𝑎, 𝑏 ∈ 𝐴. 

Example: Let X be a normed linear space.Define 𝐼: 𝑋 × 𝑋 → 𝑃(𝑋) as, 

 𝐼(𝑥, 𝑦) =  𝑆𝑒𝑔 (𝑥, 𝑦) =   { 𝑧  𝐸 ∶  𝑑(𝑥, 𝑦)  =  𝑑(𝑥, 𝑧)  +  𝑑(𝑧, 𝑦). } 

Then, I defines an interval function on X and hence a convexity. This is different from the usual 

definition of convex sets in linear spaces. 
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Remark:  In 𝑅𝑛 , we usually define a set to be convex, if 𝑡𝑥 +  (1 − 𝑡)𝑦  𝐸 whenever  

x, y  E and t  (0, 1).When R
n
 is given the Euclidean norm,  E  R

n 
, x, y  E and 

 t  (0, 1). Then,  

 𝑥 − (𝑡𝑥 +  1 − 𝑡 𝑦)  =  (1 − 𝑡)𝑥 −  1 − 𝑡 𝑦  = (1-t)  𝑥 − 𝑦)  

Similarly,   𝑡𝑥 +  1 − 𝑡 𝑦 − 𝑦  = t  𝑥 − 𝑦  

Hence,  𝑥 − 𝑦 =  𝑥 − (𝑡𝑥 +  1 − 𝑡 𝑦)  +   𝑡𝑥 +  1 − 𝑡 𝑦 − 𝑦  

Conversely if  𝑥 − 𝑦 =  𝑥 − 𝑧  +  𝑧 − 𝑦  

          Then,x − z =   k(z − y)  for some k  ≥  0   

That is, 𝑧 =  
1

1+𝑘
𝑥 +

𝑘

1+𝑘
y . Put =  

1

1+𝑘
 . Then 𝑡 (0,1) and z = tx + (1-t)y 

Example: Let 𝑅𝑛  be given the norms  .  1 ,  .   and the Euclidean norm ( .  2 )are  defined 

by,  

For 𝑥 = (𝑥(1), x(2),……x(n)),  

              𝑥 1  =    𝑥(𝑖) 𝑛
1    

              𝑥   = 𝑀𝑎𝑥{  𝑥 1  ,  𝑥 12  , … … …  𝑥 𝑛  }   and 

              𝑥 2    =    𝑥(𝑖) 2𝑛
1  

 Let n =  2, x =  (1,1), 𝑦 =  ((−1, −1) 

Then the segment 𝑠𝑒𝑔(𝑥, 𝑦) with respect to    𝑥 2 is the line segment joining x and y. But when 

we consider  𝑥 1 

𝑠𝑒𝑔 𝑥, 𝑦 = { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 − 𝑦 1 =  𝑥 − 𝑧 1 +  𝑧 − 𝑦 1} 

                   =  { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 1 − 𝑦 1  +   𝑥 2 − 𝑦 2  =  𝑥 1 − 𝑧 1  +

                          𝑥 2 − 𝑧 2   +  𝑧 1 − 𝑦 1  +   𝑧 2 − 𝑦 2  }.   

                   =   { 𝑧 =  𝑧 1 , 𝑧 2  : 4 =  1 − 𝑧 1  +   1 − 𝑧 2   +  𝑧 1 + 1 +  𝑧 2 +  1 }.   
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                    =  { 𝑧 =  𝑧 1 , 𝑧 2  : − 1 ≤ 𝑧 1 ≤ 1, −1 ≤ 𝑧 1 ≤ 1} 

Remark: If x = (x(1), x(2)) and  y  =  ( y(1), y(2) ),  

Co ( x, y) =    { z = (z(1), z(2) ) : z(1) is between x(1) and y(1), z(2) is between x(2) and y(2) } 

Remark : When we consider  𝑥  , x = (0,0) , y = (1,1). Then , 

 𝑠𝑒𝑔 𝑥, 𝑦 = { 𝑧 =  𝑧 1 , 𝑧 2  :  𝑥 − 𝑦  =  𝑥 − 𝑧  +  𝑧 − 𝑦   

  𝑥 − 𝑦   = Max {  𝑥 1 − 𝑦 1  ,  𝑥 2 − 𝑦 2   }= 1 

Now,For any 𝑧 =  𝑧 1 , 𝑧 2   , 

 1 =  𝑥 1 − 𝑦 1   ≤    𝑥 1 − 𝑧 1  +  𝑧 1 − 𝑦 1    

    ≤  Max {  𝑥 1 − 𝑧 1  ,  𝑧 2 − 𝑦 2   } +  

                                          Max {  𝑥 1 −  𝑧 1  ,  𝑧 2 − 𝑦 2   } 

  

 1 =  𝑥 2 − 𝑦 2   ≤    𝑥 2 − 𝑧 2  +  𝑧 2 − 𝑦 2   

    ≤  Max {  𝑥 1 − 𝑧 1  ,  𝑧 2 − 𝑦 2   } +  

                                         Max {  𝑥 1 −  𝑧 1  ,  𝑧 2 − 𝑦 2   } 

Hence,                      1      ≤  Max {  𝑥 1 − 𝑧 1  ,  𝑧 2 − 𝑦 2   } +  

                                         Max {  𝑥 1 −  𝑧 1  ,  𝑧 2 − 𝑦 2   } 

Thus, 

       𝑠𝑒𝑔(𝑥, 𝑦)    =    { 𝑧 =  𝑧 1 , 𝑧 2  :   𝑀𝑎𝑥 { |𝑥(1) − 𝑧(1) |, |𝑧(2) − 𝑦(2) | }  +  

                                                               𝑀𝑎𝑥 {  𝑥 1 −  𝑧 1  ,  𝑧 2 − 𝑦 2  = 1} 

                            

=  { 𝑧 =  𝑧 1 , 𝑧 2  :    { |𝑥(1) − 𝑧(1) | +    {  𝑥 1 −  𝑧 1  =                                                 2,

 𝑧 2 − 𝑦 2  +   𝑧 2 − 𝑦 2  = 1} is the line segment joining x and y.  

Now we prove the following Theorem. 
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Theorem 2.3:  Let   1  p   and f: R
2
 → R be defined as, 

 f(x,y) =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝 ,  0 ≤ x, y ≤ 1. Then f is a constant if and   

only if x = y 

Proof : First suppose that x = y. 

 Then, f(x,y) = 2
1

𝑝 𝑥 + 1 − 𝑥  =2
1

𝑝 , a constant. 

Conversely suppose that f is a constant. Then 
𝜕𝑓

𝜕𝑥
= 0 and 

𝛿𝑓

𝛿𝑦
 =0 

𝜕𝑓

𝜕𝑥
= 0 → that , 

 
1

𝑝
 𝑥𝑝 + 𝑦𝑝 

1−𝑝

𝑝  p.𝑥𝑝−1  -  
1

𝑝
 1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 

1−𝑝

𝑝  p.(1 − 𝑥)𝑝−1  = 0  

 𝑥𝑝 + 𝑦𝑝 
1−𝑝

𝑝 𝑥𝑝−1  =
 

(  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1−𝑝

𝑝 (1 − 𝑥)𝑝−1        

 

       𝑥𝑝 + 𝑦𝑝 
1

𝑝  (1-x)    =
 

     (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  𝑥  

That is,  𝑥𝑝 + 𝑦𝑝 
1

𝑝  -  x  𝑥𝑝 + 𝑦𝑝 
1

𝑝  =
 

  𝑥 (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  

That is,  

 
     (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )

1

𝑝   =  (1-x) 1 + (
𝑦

𝑥
)𝑝 

1

𝑝
=   1 + (

𝑦

𝑥
)𝑝 

1

𝑝
-  𝑥𝑝 + 𝑦𝑝 

1

𝑝 , if x  ( 0, 1) 

Hence , f(x,y) =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝  = 1 + (
𝑦

𝑥
)𝑝 

1

𝑝
 if x  ( 0, 1) 

Now, 

                   f(1,1)  =  2
1

𝑝   = f(0,0)          

 

 =   1 + (
𝑦

𝑥
)𝑝 

1

𝑝
  , x  ( 0, 1),   
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                       1 + (
𝑦

𝑥
)𝑝      =  2    

𝑦

𝑥
  = 1.     y = x. 

▄ 

The following generalizes Theorem 2.1 

Theorem 2.4:  Let   1  p   , a,b  Rand f: R
2
 → R be defined as, 

 f(x,y) =     𝑥𝑝  +  𝑦𝑝   
1

𝑝    +    (𝑎 − 𝑥)𝑝  +  (𝑏 − 𝑦)𝑝   
1

𝑝  , x between 0 and a and  

y between 0 and b  . Then f is a constant if and only if x =  
𝑎

𝑏 
 y 

Proof : First suppose that x = 
𝑎

𝑏 
y 

 Then,  

f(x,y)   =    
𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑦 +    

𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑏 − 𝑦    

=     
𝑎

𝑏
 
𝑝

+ 1 

1

𝑝
 𝑏  ( since, 0  y  b or b y  0 , we have, 

                                                                     𝑦  + 𝑏 − 𝑦   =     𝑏  

=    𝑎𝑝  +  𝑏𝑝   
1

𝑝     a constant. 

Conversely suppose that f is a constant.  

Case 1: 0  x  a, 0  y  b 

Then f(x,y) =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 
1

𝑝  

Then 
𝜕𝑓

𝜕𝑥
= 0 and 

𝛿𝑓

𝛿𝑦
 =0   

𝜕𝑓

𝜕𝑥
0  imply that, 

1

𝑝
 𝑥𝑝 + 𝑦𝑝 

1−𝑝

𝑝  p.𝑥𝑝−1  -  
1

𝑝
 𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 

1−𝑝

𝑝  p.(𝑎 − 𝑥)𝑝−1  = 0  

 𝑥𝑝 + 𝑦𝑝 
1−𝑝

𝑝 𝑥𝑝−1  =
 

(  𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 )
1−𝑝

𝑝 (𝑎 − 𝑥)𝑝−1        
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       𝑥𝑝 + 𝑦𝑝 
1

𝑝  (a-x)    =
 

     (  1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 )
1

𝑝  𝑥  

That is, 𝑎  𝑥𝑝 + 𝑦𝑝 
1

𝑝  -  x  𝑥𝑝 + 𝑦𝑝 
1

𝑝  =
 

  𝑥 (  𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 )
1

𝑝  

That is,  

 
     (  𝑎 − 𝑥)𝑝 + (𝑏 − 𝑦)𝑝 )

1

𝑝   =  (a-x) 1 + (
𝑦

𝑥
)𝑝 

1

𝑝
=  𝑎  1 + (

𝑦

𝑥
)𝑝 

1

𝑝
-  𝑥𝑝 + 𝑦𝑝 

1

𝑝 ,  

Hence , f(x,y) =  𝑥𝑝 + 𝑦𝑝 
1

𝑝  +  (1 − 𝑥)𝑝 + (1 − 𝑦)𝑝 
1

𝑝  =  𝑎  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
  

Now, 

                   f(0,0)  =  𝑎𝑝 + 𝑏𝑝 
1

𝑝  =   𝑎𝑝  +  𝑏𝑝   
1

𝑝   = f(a,b) 

Hence,  

  𝑎𝑝 + 𝑏𝑝 
1

𝑝    =   𝑎  1 + (
𝑦

𝑥
)𝑝 

1

𝑝
  

That is,   

                             
𝑦

𝑥
   =  

𝑏

𝑎
    

That is                 x   =   
𝑎

𝑏 
y 

The other cases can be proved in similar way. 

▄ 

Corollary: Let   1  p   , a, b, c, d  R and f: R
2
 → R be defined as,  

f(x,y) =     (𝑎 − 𝑥)𝑝  +  (𝑏 − 𝑦)𝑝   
1

𝑝    +    (𝑥 − 𝑐)𝑝  +  (𝑦 − 𝑑)𝑝   
1

𝑝  , x between a and c  

and y between b and d.  Then f is a constant if and only if x - a  =  
𝑐−𝑎

𝑑−𝑏 
 y. 

The above results prove that on R
2
 induced by the norm  .  𝑝  ,1 p  , for x, y in R

2 
, 
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Seg (x,y)  =   { x + (1-t)(y-x) : t (0,1)}. Hence we have proved the following Theorem. 

▄ 

Theorem 2.5: Let C be the interval convexity on R
2
 induced by the norm  ,  .  𝑝1 p  . 

Then C   coincides with the Euclidean convexity.  

Theorem 2.6. Let C be the interval convexity on R
2
 induced by the norm  ,  .  ∞  

Then C  does not coincides with the Euclidean convexity. 

Proof : Let x = (0, 0), y = (1, 0) Then, 

   𝑥 − 𝑦 ∞ = 1 

Let z =  (
1

2
,

1

2
 ). Then z is not on the line joining x and y. But  

              𝑥 − 𝑧 ∞+   𝑧 − 𝑦 ∞  =  
1

2
+

1

2
    = 1 Hence z belong to the convex hull of  {x,y}. Thus 

the line segment joining x and y is not a member of  C..  

▄ 

Theorem 2.7. : Let C be the interval convexity on R
2
 induced by the norm  ,  .  ∞ . Let x = (0, 0) 

and  y = (a, b). and let α = max{│a│,│b│} Then, The convex hull of { x, y} is the area bounded 

by the straight lines y =  x, y = x + b – a and y+x = b-a 

Proof: 

 Case1 : (a, b) is in the first quadrant. Then a, b ≥ 0. 

 Let a  ≥ b. 

 Then  𝑥 − 𝑦 ∞  = a 

 A point z = (s, t) is in the convex hull of x and y if and only if 

            Max { │s│, │t│} + Max { │a-s│, │b-t│} = a ,that is if and only if  
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 │t│ ≤ │s│, and │b-t│ ≤ │a-s│ that is if and only if –s  ≤ t ≤  s and  s-a   ≤ b-t ≤  a-s, that 

is if and only if –s  ≤ t ≤  s and    b-a +s ≤  t   ≤ a+ b-s . 

 

 Now let b ≥ a. Then,  𝑥 − 𝑦 ∞  = b and a point z = (s, t) is in the convex hull of x and y 

if and only if 

            Max { │s│, │t│} + Max { │a-s│, │b-t│} = b ,that is if and only if  

 │s│ ≤ │t│, and │a-s│ ≤ │b-t│ that is if and only if –t ≤ s ≤  t  and  t-b   ≤ a-s ≤  b-t’ 

That is–t ≤ s ≤  t  and a-b +t ≤  s   ≤ a+ b-t 

 Case2 : (a, b) is in the II quadrant. Then a ≤ 0, b ≥ 0. Then, 

 Let │a│ ≥ b. 

Then  𝑥 − 𝑦 ∞  = -a 

A point z = (s, t) is in the convex hull of x and y if and only if 

            Max { │s│, │t│} + Max { │a-s│,│b-t│} = Max { -s,│t│} + Max {s-a ,│b-t│}=  - a, 

that is if and only if  

 │t│ ≤  -s  , and │b-t│ ≤ │a-s│ that is if and only if s  ≤ t ≤  -s and  a-s ≤ b-t ≤  s-a, that is 

if and only if –s  ≤ t ≤  s and   a+b –s  ≤  t   ≤ b-a +s. 

Similarly, the other cases can be proved. 

▄ 

Corollary: The convex hull of any two points (a, b) and (c,d) is the rectangle  bounded  by the 

straight lines │a-x│ = │b-y│and │c-x│ = │d-y│ 

1. Theorem2.8: The area bounded by a circle C in R
2
 is convex with respect the 

convexities induced by  .  𝑝 , 1  p  . But not convex with respect to the convexity 

induced by  .   or  .  1 

Proof : With respect to convexities induced by  .  𝑝 , 1  p  ., it is clear. Now let R
2
 be given 

the norm   .  1. Consider the set,  S = { (x, y ):   x
2
 + y

2
  1 }.  
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Then  z1 = (1, 0), and z2 = (0, 1) are in S. Also we can see that (1, 1)  Co ({ z1, z2}), but  

(1, 1)is not appoint in S. Hence S is not convex with respect to   .  1.  

 

 

Similarly if R
2
 is given the norm   .  , and Let S = { (x, y ):   x

2
 + y

2
  2 }.  

 Then take  z1 = (1, -1) and z2 = (1, 1) . Then z1  and z2  are in S ,  

(2, 0) is in the convex hull of z1  and z2 , but (2, 0) is not in S. 

 

▄ 

Note : If the points A and B are on the line y = x or y = -x , Then the convex hull is the line 

segment joining them.   

Hahn –Banach  Seperation Theorem [1 ] : Let E1, E2 be nonempty disjoint convex subsets of a 

normed space X over a field K with E1 open. Then there is a Real hyperplane in X which 

separates E1 and E2 in the sense that: there is some f  X’ and t  R such that  

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi6z7yZr9zQAhUQT48KHW5rCicQjRwIBw&url=http://www.cs.cmu.edu/~./15110-s13/lab10/index.html&psig=AFQjCNEbh_hRNs6XKBhHVp_MB-gK3eSGqg&ust=1481003557905045
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                                    Re f(x1)   t  Re f(x2)   

for all x1  E1 and x2  E2 

▄ 

Then the statement in the following Remark is true. 

Remark: Let E be a nonempty convex subset of a normed space X over K. If a  X, a  𝐸  then 

there are f  X’ and t  R such that  

                                    Re f(x)   t  Re f(a) , for all x  𝐸.  

If  E
o 
  and b is in the boundary of E in X, then there is a nonzero f  X’ such that 

Re f(x)    Re f(b) , for all x  𝐸 . 

 Thus we can see that any (Euclidean) convex set is the intersection of half spaces. Hence 

it satisfies all the separation axioms. 

Remark: When consider the interval convexity all hyperspace need not induce half spaces. 

For example, Let C be the interval convexity on R
2
 induced by the norm  ,  .  ∞.Then straight 

lines are not in general convex. The only half spaces are those determined by the hyperspaces  

y =  x . Similarly when  .  1 is considered, the straight lines y = 0 and x = 0 induce half spaces. 

Theorem 2.9) : In an inner product space X, the convexity induced by the norm coincide with the 

usual convexity.  

 Proof: Let C be the convexity induced by the norm and D denote the usual convexity. 

 Let C  C., x, y  C  t  (0, 1) and let z = tx + (1-t)y. 

               𝑥 − 𝑧   =   1 − 𝑡 𝑥 −  1 − 𝑡 𝑦  = (1-t)  𝑥 − 𝑦 . Similarly  

  𝑧 − 𝑦   =  𝑡 𝑥 − 𝑡𝑦  = t  𝑥 − 𝑦  . 

That is,  𝑥 − 𝑦  =  𝑥 − 𝑧  +  𝑧 − 𝑦  
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 Hence, z  C. That is C  D .  

Conversely suppose that  C  D, x, y  C  and z be such that  𝑥 − 𝑦  =  𝑥 − 𝑧  +  𝑧 − 𝑦  

Then by Theorem 2.2,  

Then,x − z =   k(z − y)  for some k  ≥  0   

That is, 𝑧 =  
1

1+𝑘
𝑥 +

𝑘

1+𝑘
y . Put =  

1

1+𝑘
 . Then 𝑡 (0,1) and z = tx + (1-t)y . and hence z  C. 

That is C  C..  

 

2.3. Convexity parameters 

The convexity Parameters such as the the Helly number, Caratheodory number and Radon 

numbers are studied for interval convexities and found that 

1. Helly number of the convexity induced by  .  ∞   or  .  1  on R
2
 is 3  as that with usual 

convexity . 

2. The carathedory number is 3. 

3. The radon number is also 3 

It can be seen that , If h, c, r denote the Helly number, Caratheodory number, Radon 

number of  X with usual convexity and h denote that with interval convexity. It is Clear 

that 

i.  h  h  

ii. r    r  

But regarding the Carathedory number, an easy conclusion is not possible, The structure of 

intervals are different . However it is an easy observation that this convexity is join hull 

commutative. 
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H- CONVEXITY. 

3.1. H- convexity on R
n
 

 The separation axioms and their impact on the developments of theory convexity led to 

the study of half spaces. We have already noted that for any linear functional f on a Real linear 

space, and   R,  

 { x  X : f(x)   }, { x  X : f(x)   },{ x  X : f(x)   }  and   { x  X : f(x)  } 

are half spaces. Thus it is observed that a collection F of linear functional give rise to a collection 

of half spaces and it generates a convexity on X precisely the smallest convexity containing all 

the half spaces corresponding to the linear functional in F. This is termed as the H- convexity 

symmetrically generated by F. 

Definition: Let X be a linear space over R and F be a family of linear functional on X. The  

convexity C on X generated by { 𝑓−1 𝑎, ∞ : 𝑓  F and a R } is called the H convexity 

generated by F . If –f  F whenever f  F, then C is called a symmetric convexity. We 

usually omit one of f, -f and say that F symmetrically generates C . 

Example1: Let X be an inner product space and C be a convex set in X. By Hahn -Banach 

separation Theorem, Any convex set can be separated from any point not in C by hyper 

plane. That is, for any x  X, x  C, there is a half space H such that C   H, but x  H, 

Thus C is the intersection of half spaces. Thus the convexity on X is the H-Convexity 

generated by the set of all bounded linear functionals. 

Example 2: Let X = R
2
. Let f1, f2,  f3 and f4  be defined as follows 
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f1(x, y)   = x – y,      f2(x, y)   = x + y,  f3(x, y)   = x,  f4(x, y) = y. Then { f1, f2, -f1, -f2 }     

generates the convexity induced by the norm  .  ∞  , and { f3, f4, -f3, -f4} generates the 

convexity induced by the norm  .  1. 

Example 3: Let X = R
n
, n  3 with the norm induced by the inner product defined by 

                 𝑥, 𝑦   = x(1)y(1) + x(2)y(2) + ………….+x(n)y(n) 

            For t = ( t1, t2,…..tn-1)  R
n-1

, define ft  on R
n 
by, 

  ft(x) =  t1 x(1) + t2x(2)+……..tn-1x(n-1) – x(n) 

          Then ft  is linear for all t  R
n-1

. 

Let  r  0 and  T = { t = ( t1, t2,…..tn-1)  R
n-1

 :  𝑡  = r},  and S = { (t, 0) : t T} 

Then for any x  S, ft(x)   𝑡   𝑥   r
2
.  

Now for, x  S,  ft(x)  = r
2
 if and only if  x = (t, 0), for, by Schwartz’s inequality,   

ft(x)=  𝑡   𝑥  if and only if  𝑥, (𝑡, 0)  =  𝑥   (𝑡, 0)   if and only if x and (t, 0) are linearly 

dependent. Since   𝑥  =   (𝑡, 0)    = r, x =  (t, 0).  

Now If x  =  - ( t, 0), Then ft(x)  =  -r
2
. Hence, x = (t, 0). 

Hence, The hyper plane ft(x)  = r
2 
 meets S in only one point (t, 0). Similarly the hyper plane  

 ft(x)  = - r
2 
  meets S in only one point (-t, 0). Hence, 

 S is contained in the half space { x  R
n 
: ft(x)   r

2
} and also contained in { x  R

n 
: ft(x)   - r

2
} 

Let C  =     𝑥 ∈  𝑅𝑛 : − 𝑟2 ≤ 𝑓𝑡 𝑥  ≤  𝑟2  𝑡∈𝑇 . 

Then C is convex and  S  C. Let C  be the H convexity on R
n
 symmetrically generated by 

 F = { ft : t  T}.Then C is the convex hull of S.  

Now consider the points  c = (0,0,….,r
2
) and  y = (0,0,….,-r

2
) .Then c and  c are in C. Now Let  
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C = C  { c, c}. Then C  C. 

  For t T, Let Pt denote the hyper plane 𝑓𝑡 𝑥 =  𝑟2and P-t  denote the hyper plane 

𝑓𝑡 𝑥 =  −𝑟2
 

Now, let E be any finite subset of C. Then there are s,t  T such that E  Pt =  and E  P-s =  

Thus, E  { x  R
n
 : ft(x)   r

2
}  { x  R

n
 : ft(x)  - r

2
}.  

Hence c, c  co ( E ).  

Hence co ( E ) is  C for any finite subset of C. But C is not convex, for,  

S  C and c,c  co (S). 

Thus H is of infinite arity. 

Remark:  C is not join hull commutative . See the case when n = 3, r = 1 

 Then   F  = { ft : ft(x, y, z ) = t1 x+ t2 y -  z ;  𝑡1
2 + 𝑡2

2 = 1}  

Let ax +by = 0 , z = 0 (a, b)   (0, 0) be a straight line.  

Let t1  = 
𝑎

 𝑎2+𝑏2
 and t2   = 

𝑏

 𝑎2+𝑏2
 

Then the hyper planes,  

 t1 x+ t2 y -  z = 0  and  -t1 x+ -t2 y -  z = 0   intersect at the line ax +by = 0 , z = 0. Hence 

every line in the x-y plane is convex ( w.r. to the H- convexity generated by F }.  

Similarly we can see that any line segment in the x-y Plane is convex.  

Let C be the segment joining any two distinct points A and B in the x-y plane and p be a 

point not in the line joining A and B .Then,  
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F =  { Co ({c, p}) : c  C} is the area in the plane bounded by the triangle with vertices 

A, B and p. But F is not convex. The following figure gives the convex hull of the triangle. 

 

 

                                                    Figure 4 

 

3.2 . Separation Properties 

Since the H convexity is generated by half spaces, it is clearly S3. But it is not S4 in 

general. For example, Let C be the H-convexity symmetrically generated by the co- ordinate 

projections and their sum, defined on R
3
. F = { f1 , f2,  f3,  f4  =  f1  +  f2 +   f3 } 

Let  C1 = { (x, y, z ) : x  0 and  y   0 } and 

      C2 = { (x, y, z ) : z   -1  and   x + y + z   0 }  
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Then C1 and  C2 are disjoint convex sets which can not be separated by half spaces. 

That is the convexity is not S4. However we can see that, 

Remark:  1) Any symmetric H- Convexity on R
2 
 is  S4.  

    2)  The Symmetric H- convexity defined by Example 3 is not S4.  For if we take n = 3 

Let C1 = { (x, y, z ) : z = 0 and  y  = 0 } and 

      C2 = { (x, y, z ) : z = 1  and   x =  0 } . Then C1 and  C2 are disjoint convex sets 

which can not be separated by half spaces. That is the convexity is not S4. 

 

3.3 .  Convexity Parameters  

 Since any H convex set in R
n
 is Euclidean convex , it can be seen that, 

  h         n+1 and 

  r         n+1 

But for the H- convexity in Example 3, The caratheodory number is .  

 

 

 

 

 

.  
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CONCLUDING REMARKS AND SCOPE FOR FURTHER 

STUDY 

 

 
  This work is an attempt to find out the convexity properties of Normed spaces. In 

this we analyze different convex structures on normed spaces. In a normed space there is the 

convexity associated with the linear space structure and also convexity induced by the 

interval function defined by the norm. It  is found that there is difference between the two. 

Also The H convexity symmetrically generated by a family of linear functional is also 

studied. It is also observed that in linear spaces of finite dimension greater than 2, there are 

convexity of infinite arity. An example is given to show that the H- Convexity need not be 

join hull commutative. Also the study of the parameters such as Helly number, 

Caratheodory number,  Radon number and has been done. Some of the findings are given 

below 

2.  Let C be the interval convexity on R
2
 induced by the norm  ,  .  ∞ . Let x = (0, 0) and   

y = (a, b). and let α = max{│a│,│b│} Then, The convex hull of { x, y} is the area 

bounded by the straight lines y =  x, y = x + b – a and y+x = b-a 

3.  Let C be the interval convexity on R
2
 induced by the norm  ,  .  𝑝1 p  . 

Then C   coincides with the Euclidean convexity.  

4. The area bounded by a circle C is convex with respect to both the convexities 

5. If x = (x(1), x(2)) and  y  =  ( y(1), y(2) ),  

Co ( x, y) = {z: z(1) is between x(1) and y(1), z(2) is between x(2) and y(2)} 

6. Let X = R
n
, n  3 with the norm induced by the inner product defined by 

              𝑥, 𝑦   = x(1)y(1) + x(2)y(2) + ………….+x(n)y(n) 

            For , t = ( t1, t2,…..tn-1)  R
n-1

, define ft  on R
n 
by, 

   ft(x) =  t1 x(1) + t2x(2)+……..tn-1x(n-1) – x(n) and  

Then The H-convexity defined by  

 F  = { ft : ft(x(1), x(2) ……x(n)) = t1 x(1) + t2x(2)+……..tn-1x(n-1) – x(n)  ;  𝑡1
2 + . . 𝑡𝑛−1

2 = 1} is of 

infinite arity. 
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  This  is far away from being complete, because in several cases we could consider 

the dimension to be 2. We mention some of the problems that are to be considered in future. 

1. Distinguish and compare the convexities induced by different norms on infinite 

dimensional Normed spaces.  

2. Characterize the symmetric H-convexity which is S4. 

3. Study other convexity related concepts for higher dimensional Normed spaces. 
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