FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Mathematics
MM 5B 05-VECTOR CALCULUS
Time : Three Hours
Maximum : 30 Weightage
I. Answer all questions :

1 Curvature of a straight line is \qquad
2 Find the parametric equation for the line through the points $P(-3,2,-3)$ and $Q(1,-1,4)$.
3 The domain of the function $\mathrm{w}=\sin (\mathrm{x} y)$ is the entire function. Then range $=$ \qquad
4 If $\vec{r}(t)=(\cos t) i+(\sin t) j+t k$ then $\lim _{\pi}(t)-$ \qquad

5 Vector equation for the line through $p_{0}\left(x_{0} y_{0}, z_{0}\right.$ and parallel to \vec{v} is $p_{o} p$
6 Find - if $f(x, y)=x^{2}+3 x y+y-1$ at $(4,-5)$.
lira
${ }^{7}(x, y) \rightarrow\left(0, \frac{\pi}{4}\right) \sec x \tan x=$
8 Find the gradient of $g(x, y)=y-x^{2}$ at $\left.-\mathbf{1}, \mathbf{0}\right)$.
9 Define critical point.
10 Find the gradient field of $f(x, y, z)=x y z$.
11 If \mathbf{F} is a field defined on D and $\mathrm{F}=\mathrm{V}$ [for some scalar function f on D then f is called a \qquad of F .

12 Examine whether $\mathrm{F}=\boldsymbol{y} \boldsymbol{z i}+\boldsymbol{z} \boldsymbol{x} j+\boldsymbol{x} y k$ is conservative.
II. Answer any nine questions :

13 Show that $i \int^{t}(t)=(\sin t) i+(c \phi s t) j+\quad k$ is orthogonal to its derivative.
15 Find the parametric equation for the line that is tangent to the curve :

$$
\vec{r}(t)=(\mathrm{a} \sin t) i+(\mathrm{a} \cos t) j+b t k, t_{\mathrm{U}} \quad 2 \pi .
$$

16 Find the unit tangent vector of the curve :

$$
\vec{r}(t)=\left(\cos ^{-} t\right) j^{+}\left(\sin ^{-} t\right) k, O \quad t \quad \frac{-}{2}
$$

17 Write the range of the function :

$$
f(x, y)=4 x^{2}+9 y^{2} .
$$

18 If $\mathrm{w}=x y^{\sim}+x^{\sim} y^{\sim}+x^{n} y^{\wedge}$. Verify that $w_{x y}=w$.
19 If $\mathrm{w}=\mathrm{x}^{2} \quad \mathrm{y}^{2}+\mathrm{z}^{2}$ and $z=x^{2}+\mathrm{y} 2$, find $|\partial z|$.
20 Find $V f$ at $(1,1,1)$ of $f(x, y, z)=x^{2}+y^{2}-2 z^{2}+z \ln x$

22 Find the divergence of $\mathrm{F}(x, y)=\left(\mathrm{x}^{2}-\mathrm{y}\right) i+\left(x y-Y^{2}\right)$
23 State Green's theorem (Normal form).
24 State divergence theorem.

$$
\text { x } 1=9 \text { weightage) }
$$

III. Answer any five questions :
25. Find the distance from the point $(2,1,3)$ to the line $x=2+2 t, y=1+6 t, z=3$.

26 Find the plane through the points $(1,1,-1),(2,0,2),(0,-2,1)$.
27 Prove that the curvature of a circle of radius a is $\frac{1}{\mathrm{a}}$.
28 Find the Torsion for the helix :

$$
\vec{r}(t)=(a \cos t) i+a \sin t) j+b t k, \quad 0, \mathrm{a}^{2}+\mathrm{b}^{2} \mathrm{O} .
$$

29 Show that the function $f(x, y)={\underset{x}{4}}_{2 x^{2} y}^{y}$, has no limit as (x, y) approaches $(0,0)$.
30 Find the linearization of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ at $(0,1,0)$.
31 A fluid's velocity field is $\mathrm{F}=x i+z j+y k$. Find the flow along the helix :

$$
\vec{r}(t)=(\cos t) i+(\sin t) j+t k, O_{-}<t \leq 2 .
$$

32 Evaluate $\iint e^{-2 \ldots \omega^{2}} d y d x$ where R is the semi-circular region bounded by the x -axis and the curve $\mathrm{y}=\sqrt{1}-$

$$
\text { (} 5 \times 2=10 \text { weightage) }
$$

IV. Answer both the questions:

33 Find the point of intersection of the lines $x=2 t+1, y=3 t+2, z=4 t+3$ and $\mathrm{x}=s+2, \mathrm{y}=2 \mathrm{~s}+4, \mathrm{z}=-4 \mathrm{~s}-1$ and then find the plane determined by these lines.

34 Find a potential function f for the field $\mathrm{F}=2 x i+3 y j+4 z k$.

