FIFTH SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Mathematics
MM 5B 06—ABSTRACT ALGEBRA

Time : Three Hours
Maximum : 30 Weightage
Part A
Questions from 1 to 12 are Compulsory.
Each has weightage Y4.

1. Give an example of a binary operation on the set of integers ' Z '.
2. State True or False :
" $(\mathrm{R},+\rangle$ is isomorphic to $(\mathrm{R}+,$.$) " where ' +$ ' and '.' are the usual addition and multiplication respectively.
3. The number of non-trivial proper subgroup of \mathbf{Z}_{4} is
4. Find the number of generators of a cyclic group of order 5 .
5. If $a=\left|\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2\end{array}\right|$ and $\tau=\left|\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 61 \\ 2 & 4 & 1 & 3 & 6 & 5\end{array}\right|$ are two permutations in \mathbf{s}_{6}. Compute a т.
6. Define 'transposition' in $\mathrm{S}_{\boldsymbol{r}}$.
7. Find the left coset of the subgroup 3 Z of Z containing 1 .
8. If ${ }_{4}$ is a homomorphism of a group G into a group G^{I}, then for a $E G \quad \phi\left(a^{-}\right)-$
9. How many units are there in the ring of integers?
10. Find the characteristic of $Z_{i n}$.
11. What are the subspaces of the vector space R ?
12. State True or False :
"Any subset S of a vector space V containing the zero vector is always linearly dependent".
(12 $\times 1 / 4=3$ weightage)

Part B (Short Answer Type Questions)

Answer all nine questions.
Each question has weightage 1.
13. Is the set-off all non-negative integers (including 0) under addition a group
14. Describe all the elements in the cyclic subgroup of GL $(2, \mathrm{R})$ generated by
$\begin{array}{ll}1 & 11\end{array}$ O 11
15. Prove that every cyclic group is Abelian.
16. Express the permutation $\left|\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right|$ of S_{8} as a product of disjoint cycles and then as a product of transpositions.
17. Find the orbits of the permutation $\mathrm{a}: z \quad$ where $\sigma(n)=\mathrm{n}+2$.
18. State and prove Lagrange's theorem.
19. Define a ring and give example.
20. Solve the equation $x^{2}-5 x+6=0$ in Z_{12}.
21. Is the set of all polynomials of degree ' n ' with usual rule of addition and multiplication a vector space? Explain your answer.

Part C (Short Essay Questions)

Answer any five questions.
Each question has weightage 2.
22. If G is a group with binary operation x, prove that the left and right cancellation laws hold in G .
23. Show that the collection of all permutation of the set $\{1,2,3)$ is a group under permutation multiplication.
24. Prove that a subgroup of a cyclic group is cyclic.
25. Let ϕ be a homomorphism of a group G into a group G and H a subgroup of G, then prove that $[\mathrm{H}]$ is a subgroup of G^{\prime}.
26. If R is a ring with additive identity ' 0 ', then for any $a ; b \mathrm{E} \mathrm{R}$. Prove the following :
(a) $\mathrm{a}(-\mathrm{b})=(-a) b=-(a, b)$.
(b) $(-a)(-b)=a b$.
27. If P is a prime, then prove that \mathbb{Z}_{μ} is a field.
28. Find ' k ' such that $42,-1,3),(3,4,-1),(\mathrm{k}, 2,1)$) is linearly independent.
($5 \times 2=10$ weightage)

Part D (Essay Questions)

Answer any two questions. Each question has weightage 4.
29. (a) State and prove a necessary and sufficient condition for a non-empty subset H of a group G to be a sub-group of G.
(b) Show that if H and K are subgroups of abelian group G, then $\{h \mathrm{~K} h \mathbf{e} H, k \mathrm{E} K$ is also a subgroup of G.
30. (a) Define even permutations and give example.
(b) If n 2 , then prove that the collection of all even permutations of $\{1,2,3, \quad, \mathrm{n}\}$ forms a subgroup of order $-1 / 2$ of the symmetric group S_{16}.

31, (a) Define dimension of a vector space.
(b) Find the dimension of the subspace $U=\left\{\left(x_{1}, x_{2}, x_{3}\right) / x_{1}-x_{2}+x_{3}=0\right\}$ of \mathbf{R}^{3} by finding a basic for U.
(c) Let U and W be two subspaces of a finite dimensional vector space V . Then prove that : $\operatorname{dim}(U+W) \operatorname{dim} U+\operatorname{dim} W--\operatorname{dim}(U \mathbf{n} \mathbf{W})$.

